{"title":"通过调节糖尿病大鼠模型中碳水化合物代谢的关键酶,载入橙皮素的壳聚糖纳米粒子可改善高血糖症。","authors":"Sivamathi Rathna Priya Radhakrishnan, Karthik Mohan, Ashokkumar Natarajan","doi":"10.1002/jbt.23805","DOIUrl":null,"url":null,"abstract":"<p>The study aimed to investigate the potential of hesperetin-loaded chitosan nanoparticles (HSPCNPs) in alleviating hyperglycemia by modulating key enzymes in diabetic rats. Chitosan nanoparticles loaded with hesperetin were prepared using the ionic gelation method and characterized with Electron microscope (SEM), zeta potential, particle size analysis, Fourier-transform infrared (FT-IR), Energy dispersive spectroscopy (EDS) and Encapsulation efficiency and Loading efficiency. To induce diabetes, rats were fed a high-fat beef tallow diet for 28 days, then given a single dose of streptozotocin (STZ) at 35 mg/kg b.w in 0.1 M citrate buffer (pH 4.0). Rats were treated with HSPCNPs at doses of 10, 20, and 40 mg/kg b.w. The analyzed parameters included body weight, food and water intake, plasma glucose and insulin, liver and skeletal muscle glycogen levels, and carbohydrate metabolism. SEM imaging revealed dimensions between 124.2 and 251.6 nm and a mean particle size of 145.0 nm. FT-IR analysis confirmed the presence of functional groups in the chitosan nanoparticles, and the zeta potential was 35.5 mV. HSPCNP 40 mg/kg b.w significantly (<i>p</i> < 0.05) reduced blood glucose levels and glycosylated hemoglobin, improving body weight, food intake, and reducing water intake. In diabetic rats, enzymes for carbohydrate metabolism like fructose 1,6-bisphosphatase, phosphoenolpyruvate carboxykinase, and glucose 6-phosphatase are evaluated in the liver, while glucose 6 phosphate dehydrogenase and hexokinase activity were significantly lower. Additionally, plasma insulin levels increased, indicating enhanced insulin sensitivity. The results show that HSPCNPs at 40 mg/kg b.w. ameliorate hyperglycemia to provide robust protection against diabetic complications and significantly improve metabolic health.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hesperetin-loaded chitosan nanoparticles ameliorate hyperglycemia by regulating key enzymes of carbohydrate metabolism in a diabetic rat model\",\"authors\":\"Sivamathi Rathna Priya Radhakrishnan, Karthik Mohan, Ashokkumar Natarajan\",\"doi\":\"10.1002/jbt.23805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The study aimed to investigate the potential of hesperetin-loaded chitosan nanoparticles (HSPCNPs) in alleviating hyperglycemia by modulating key enzymes in diabetic rats. Chitosan nanoparticles loaded with hesperetin were prepared using the ionic gelation method and characterized with Electron microscope (SEM), zeta potential, particle size analysis, Fourier-transform infrared (FT-IR), Energy dispersive spectroscopy (EDS) and Encapsulation efficiency and Loading efficiency. To induce diabetes, rats were fed a high-fat beef tallow diet for 28 days, then given a single dose of streptozotocin (STZ) at 35 mg/kg b.w in 0.1 M citrate buffer (pH 4.0). Rats were treated with HSPCNPs at doses of 10, 20, and 40 mg/kg b.w. The analyzed parameters included body weight, food and water intake, plasma glucose and insulin, liver and skeletal muscle glycogen levels, and carbohydrate metabolism. SEM imaging revealed dimensions between 124.2 and 251.6 nm and a mean particle size of 145.0 nm. FT-IR analysis confirmed the presence of functional groups in the chitosan nanoparticles, and the zeta potential was 35.5 mV. HSPCNP 40 mg/kg b.w significantly (<i>p</i> < 0.05) reduced blood glucose levels and glycosylated hemoglobin, improving body weight, food intake, and reducing water intake. In diabetic rats, enzymes for carbohydrate metabolism like fructose 1,6-bisphosphatase, phosphoenolpyruvate carboxykinase, and glucose 6-phosphatase are evaluated in the liver, while glucose 6 phosphate dehydrogenase and hexokinase activity were significantly lower. Additionally, plasma insulin levels increased, indicating enhanced insulin sensitivity. The results show that HSPCNPs at 40 mg/kg b.w. ameliorate hyperglycemia to provide robust protection against diabetic complications and significantly improve metabolic health.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbt.23805\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbt.23805","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Hesperetin-loaded chitosan nanoparticles ameliorate hyperglycemia by regulating key enzymes of carbohydrate metabolism in a diabetic rat model
The study aimed to investigate the potential of hesperetin-loaded chitosan nanoparticles (HSPCNPs) in alleviating hyperglycemia by modulating key enzymes in diabetic rats. Chitosan nanoparticles loaded with hesperetin were prepared using the ionic gelation method and characterized with Electron microscope (SEM), zeta potential, particle size analysis, Fourier-transform infrared (FT-IR), Energy dispersive spectroscopy (EDS) and Encapsulation efficiency and Loading efficiency. To induce diabetes, rats were fed a high-fat beef tallow diet for 28 days, then given a single dose of streptozotocin (STZ) at 35 mg/kg b.w in 0.1 M citrate buffer (pH 4.0). Rats were treated with HSPCNPs at doses of 10, 20, and 40 mg/kg b.w. The analyzed parameters included body weight, food and water intake, plasma glucose and insulin, liver and skeletal muscle glycogen levels, and carbohydrate metabolism. SEM imaging revealed dimensions between 124.2 and 251.6 nm and a mean particle size of 145.0 nm. FT-IR analysis confirmed the presence of functional groups in the chitosan nanoparticles, and the zeta potential was 35.5 mV. HSPCNP 40 mg/kg b.w significantly (p < 0.05) reduced blood glucose levels and glycosylated hemoglobin, improving body weight, food intake, and reducing water intake. In diabetic rats, enzymes for carbohydrate metabolism like fructose 1,6-bisphosphatase, phosphoenolpyruvate carboxykinase, and glucose 6-phosphatase are evaluated in the liver, while glucose 6 phosphate dehydrogenase and hexokinase activity were significantly lower. Additionally, plasma insulin levels increased, indicating enhanced insulin sensitivity. The results show that HSPCNPs at 40 mg/kg b.w. ameliorate hyperglycemia to provide robust protection against diabetic complications and significantly improve metabolic health.