必杀丝的自组织及其在细菌分裂环形成中的作用

IF 17.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Nature Physics Pub Date : 2024-08-12 DOI:10.1038/s41567-024-02597-8
Christian Vanhille-Campos, Kevin D. Whitley, Philipp Radler, Martin Loose, Séamus Holden, Anđela Šarić
{"title":"必杀丝的自组织及其在细菌分裂环形成中的作用","authors":"Christian Vanhille-Campos, Kevin D. Whitley, Philipp Radler, Martin Loose, Séamus Holden, Anđela Šarić","doi":"10.1038/s41567-024-02597-8","DOIUrl":null,"url":null,"abstract":"Filaments in the cell commonly treadmill. Driven by energy consumption, they grow on one end while shrinking on the other, causing filaments to appear motile even though individual proteins remain static. This process is characteristic of cytoskeletal filaments and leads to collective filament self-organization. Here we show that treadmilling drives filament nematic ordering by dissolving misaligned filaments. Taking the bacterial FtsZ protein involved in cell division as an example, we show that this mechanism aligns FtsZ filaments in vitro and drives the organization of the division ring in living Bacillus subtilis cells. We find that ordering via local dissolution also allows the system to quickly respond to chemical and geometrical biases in the cell, enabling us to quantitatively explain the ring formation dynamics in vivo. Beyond FtsZ and other cytoskeletal filaments, our study identifies a mechanism for self-organization via constant birth and death of energy-consuming filaments. Treadmilling of cytoskeletal filaments is crucial for their functional self-organization. Now the mechanism underpinning this collective organization is shown to be the dissolution of misaligned filaments.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 10","pages":"1670-1678"},"PeriodicalIF":17.6000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41567-024-02597-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Self-organization of mortal filaments and its role in bacterial division ring formation\",\"authors\":\"Christian Vanhille-Campos, Kevin D. Whitley, Philipp Radler, Martin Loose, Séamus Holden, Anđela Šarić\",\"doi\":\"10.1038/s41567-024-02597-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Filaments in the cell commonly treadmill. Driven by energy consumption, they grow on one end while shrinking on the other, causing filaments to appear motile even though individual proteins remain static. This process is characteristic of cytoskeletal filaments and leads to collective filament self-organization. Here we show that treadmilling drives filament nematic ordering by dissolving misaligned filaments. Taking the bacterial FtsZ protein involved in cell division as an example, we show that this mechanism aligns FtsZ filaments in vitro and drives the organization of the division ring in living Bacillus subtilis cells. We find that ordering via local dissolution also allows the system to quickly respond to chemical and geometrical biases in the cell, enabling us to quantitatively explain the ring formation dynamics in vivo. Beyond FtsZ and other cytoskeletal filaments, our study identifies a mechanism for self-organization via constant birth and death of energy-consuming filaments. Treadmilling of cytoskeletal filaments is crucial for their functional self-organization. Now the mechanism underpinning this collective organization is shown to be the dissolution of misaligned filaments.\",\"PeriodicalId\":19100,\"journal\":{\"name\":\"Nature Physics\",\"volume\":\"20 10\",\"pages\":\"1670-1678\"},\"PeriodicalIF\":17.6000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41567-024-02597-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s41567-024-02597-8\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41567-024-02597-8","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

细胞中的细丝通常会 "跑步机"。在能量消耗的驱动下,它们的一端增长,而另一端则收缩,从而使丝状物看起来是运动的,即使单个蛋白质保持静止不动。这一过程是细胞骨架细丝的特征,并导致集体细丝自组织。在这里,我们展示了踩踏运动通过溶解错位的细丝来驱动细丝向列有序化。以参与细胞分裂的细菌 FtsZ 蛋白为例,我们展示了这种机制在体外使 FtsZ 细丝排列整齐,并在活的枯草杆菌细胞中驱动分裂环的组织。我们发现,通过局部溶解排序还能使系统快速响应细胞中的化学和几何偏差,从而使我们能够定量解释体内环的形成动态。除了 FtsZ 和其他细胞骨架丝之外,我们的研究还发现了一种通过耗能丝的不断生灭实现自组织的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Self-organization of mortal filaments and its role in bacterial division ring formation
Filaments in the cell commonly treadmill. Driven by energy consumption, they grow on one end while shrinking on the other, causing filaments to appear motile even though individual proteins remain static. This process is characteristic of cytoskeletal filaments and leads to collective filament self-organization. Here we show that treadmilling drives filament nematic ordering by dissolving misaligned filaments. Taking the bacterial FtsZ protein involved in cell division as an example, we show that this mechanism aligns FtsZ filaments in vitro and drives the organization of the division ring in living Bacillus subtilis cells. We find that ordering via local dissolution also allows the system to quickly respond to chemical and geometrical biases in the cell, enabling us to quantitatively explain the ring formation dynamics in vivo. Beyond FtsZ and other cytoskeletal filaments, our study identifies a mechanism for self-organization via constant birth and death of energy-consuming filaments. Treadmilling of cytoskeletal filaments is crucial for their functional self-organization. Now the mechanism underpinning this collective organization is shown to be the dissolution of misaligned filaments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Physics
Nature Physics 物理-物理:综合
CiteScore
30.40
自引率
2.00%
发文量
349
审稿时长
4-8 weeks
期刊介绍: Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests. The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.
期刊最新文献
Super- and subradiant dynamics of quantum emitters mediated by atomic matter waves Universal dynamics exposed by interaction quenches Nematic fluctuations shape Cooper pairs Islands identified Highly anisotropic superconducting gap near the nematic quantum critical point of FeSe1−xSx
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1