通过添加 P 的电助凝固细化共晶铝硅合金中的初级硅相

IF 3.4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Engineering Materials Pub Date : 2024-08-10 DOI:10.1002/adem.202401025
Su‐Ji Jin, Jungho Shin, Jong‐Won Bang, Yoon‐Jun Kim, Hyun‐Do Jung, Moon‐Jo Kim
{"title":"通过添加 P 的电助凝固细化共晶铝硅合金中的初级硅相","authors":"Su‐Ji Jin, Jungho Shin, Jong‐Won Bang, Yoon‐Jun Kim, Hyun‐Do Jung, Moon‐Jo Kim","doi":"10.1002/adem.202401025","DOIUrl":null,"url":null,"abstract":"The efficient processing of hypereutectic Al–Si alloys depends on controlling the microstructure of the primary Si phase during solidification. This study investigates the effects of electric current and phosphorus (P) addition on the refinement of primary Si, with the results confirming that applying electric current during solidification refines the primary Si phase; introducing P further enhances this refinement. Notably, when 10 ppm of P is added (below the identified critical amount of 20 ppm), an improved refinement effect is observed compared with the application of either electric current or P alone. Applying an electric current generates a circulating flow within the melt, resulting in an increased cooling rate, which leads to improved nucleation behavior for the primary Si phase. In addition, the circulating flow generated within the melt influences the dispersion of aluminum phosphide during nucleation. Adding P at concentrations above 40 ppm does not yield further benefits, suggesting a saturation point for its efficacy. This study demonstrates that the concurrent electric current application and minimal P addition can significantly enhance the refinement of primary Si phases, offering a potent approach for optimizing the microstructural properties of hypereutectic Al–Si alloys.","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Refinement of Primary Si Phase in Hypereutectic Al–Si Alloy by Electrically Assisted Solidification with P Addition\",\"authors\":\"Su‐Ji Jin, Jungho Shin, Jong‐Won Bang, Yoon‐Jun Kim, Hyun‐Do Jung, Moon‐Jo Kim\",\"doi\":\"10.1002/adem.202401025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The efficient processing of hypereutectic Al–Si alloys depends on controlling the microstructure of the primary Si phase during solidification. This study investigates the effects of electric current and phosphorus (P) addition on the refinement of primary Si, with the results confirming that applying electric current during solidification refines the primary Si phase; introducing P further enhances this refinement. Notably, when 10 ppm of P is added (below the identified critical amount of 20 ppm), an improved refinement effect is observed compared with the application of either electric current or P alone. Applying an electric current generates a circulating flow within the melt, resulting in an increased cooling rate, which leads to improved nucleation behavior for the primary Si phase. In addition, the circulating flow generated within the melt influences the dispersion of aluminum phosphide during nucleation. Adding P at concentrations above 40 ppm does not yield further benefits, suggesting a saturation point for its efficacy. This study demonstrates that the concurrent electric current application and minimal P addition can significantly enhance the refinement of primary Si phases, offering a potent approach for optimizing the microstructural properties of hypereutectic Al–Si alloys.\",\"PeriodicalId\":7275,\"journal\":{\"name\":\"Advanced Engineering Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Engineering Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adem.202401025\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adem.202401025","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

过共晶铝硅合金的高效加工取决于在凝固过程中对原生硅相微观结构的控制。本研究调查了电流和磷(P)添加量对硅原生相细化的影响,结果证实在凝固过程中施加电流可细化硅原生相;引入磷可进一步增强这种细化。值得注意的是,当加入 10 ppm 的磷(低于已确定的临界量 20 ppm)时,与单独施加电流或磷相比,细化效果有所改善。施加电流会在熔体中产生环流,导致冷却速度加快,从而改善主硅相的成核行为。此外,熔体内产生的循环流还会影响成核过程中磷化铝的分散。添加浓度超过 40 ppm 的磷不会产生更多益处,这表明磷的功效已达到饱和点。这项研究表明,同时施加电流和添加极少量的 P 可以显著提高原生硅相的细化程度,为优化过共晶铝硅合金的微观结构特性提供了一种有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Refinement of Primary Si Phase in Hypereutectic Al–Si Alloy by Electrically Assisted Solidification with P Addition
The efficient processing of hypereutectic Al–Si alloys depends on controlling the microstructure of the primary Si phase during solidification. This study investigates the effects of electric current and phosphorus (P) addition on the refinement of primary Si, with the results confirming that applying electric current during solidification refines the primary Si phase; introducing P further enhances this refinement. Notably, when 10 ppm of P is added (below the identified critical amount of 20 ppm), an improved refinement effect is observed compared with the application of either electric current or P alone. Applying an electric current generates a circulating flow within the melt, resulting in an increased cooling rate, which leads to improved nucleation behavior for the primary Si phase. In addition, the circulating flow generated within the melt influences the dispersion of aluminum phosphide during nucleation. Adding P at concentrations above 40 ppm does not yield further benefits, suggesting a saturation point for its efficacy. This study demonstrates that the concurrent electric current application and minimal P addition can significantly enhance the refinement of primary Si phases, offering a potent approach for optimizing the microstructural properties of hypereutectic Al–Si alloys.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Engineering Materials
Advanced Engineering Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
5.60%
发文量
544
审稿时长
1.7 months
期刊介绍: Advanced Engineering Materials is the membership journal of three leading European Materials Societies - German Materials Society/DGM, - French Materials Society/SF2M, - Swiss Materials Federation/SVMT.
期刊最新文献
Masthead Combining Chemical Vapor Deposition and Spark Plasma Sintering for the Production of Tungsten Fiber-Reinforced Tungsten (Hybrid – Wf/W) Comparative Study of Room and Cryogenic Deformation Behavior of Additive Manufactured Ti–6Al–4V Alloy Ultrasonic Punching with Inkjet-Printed Dot Array for Fabrication of Perforated Metal Pattern as Transparent Heater Self-Healing Waterborne Polyurethanes as a Sustainable Gel Electrolyte for Flexible Electrochromic Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1