工程钢疲劳评估的数字方法

IF 3.4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Engineering Materials Pub Date : 2024-08-10 DOI:10.1002/adem.202400992
Sascha Fliegener, Johannes Rosenberger, Michael Luke, José Manuel Domínguez, Joana Francisco Morgado, H. Kobialka, Torsten Kraft, Johannes Tlatlik
{"title":"工程钢疲劳评估的数字方法","authors":"Sascha Fliegener, Johannes Rosenberger, Michael Luke, José Manuel Domínguez, Joana Francisco Morgado, H. Kobialka, Torsten Kraft, Johannes Tlatlik","doi":"10.1002/adem.202400992","DOIUrl":null,"url":null,"abstract":"Engineering steels are used for a wide range of applications in which their fatigue behavior is a crucial design factor. The fatigue properties depend on various influencing factors such as chemical composition, heat treatment, surface properties, load parameters, microstructure, and others. During product development, various material characterization and qualification experiments are mandatory. For a faster and more cost‐efficient development, data driven methods (machine learning) promise to replace or to complement material testing by prediction of the fatigue strength. With an ontology‐based, semantically‐linked knowledge graph, representing the manufacturing history of the material, the influence of the parameters of the process chain on the resulting properties can be accounted for. Herein, it is shown how a fatigue database containing a wide range of materials is assembled from literature. After postprocessing and curation of the data, machine learning predictions of mechanical properties are discussed under multiple aspects. A domain ontology is defined, containing the relevant class definitions for the use case. After applying a data integration and mapping workflow, it is shown how the data can be systematically queried using knowledge graphs describing the manufacturing history of the materials.","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Digital Methods for the Fatigue Assessment of Engineering Steels\",\"authors\":\"Sascha Fliegener, Johannes Rosenberger, Michael Luke, José Manuel Domínguez, Joana Francisco Morgado, H. Kobialka, Torsten Kraft, Johannes Tlatlik\",\"doi\":\"10.1002/adem.202400992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Engineering steels are used for a wide range of applications in which their fatigue behavior is a crucial design factor. The fatigue properties depend on various influencing factors such as chemical composition, heat treatment, surface properties, load parameters, microstructure, and others. During product development, various material characterization and qualification experiments are mandatory. For a faster and more cost‐efficient development, data driven methods (machine learning) promise to replace or to complement material testing by prediction of the fatigue strength. With an ontology‐based, semantically‐linked knowledge graph, representing the manufacturing history of the material, the influence of the parameters of the process chain on the resulting properties can be accounted for. Herein, it is shown how a fatigue database containing a wide range of materials is assembled from literature. After postprocessing and curation of the data, machine learning predictions of mechanical properties are discussed under multiple aspects. A domain ontology is defined, containing the relevant class definitions for the use case. After applying a data integration and mapping workflow, it is shown how the data can be systematically queried using knowledge graphs describing the manufacturing history of the materials.\",\"PeriodicalId\":7275,\"journal\":{\"name\":\"Advanced Engineering Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Engineering Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adem.202400992\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adem.202400992","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

工程钢应用广泛,其疲劳性能是关键的设计因素。疲劳特性取决于各种影响因素,如化学成分、热处理、表面特性、载荷参数、微观结构等。在产品开发过程中,必须进行各种材料表征和鉴定实验。为了实现更快、更具成本效益的开发,数据驱动方法(机器学习)有望通过预测疲劳强度来取代或补充材料测试。通过基于本体、语义关联的知识图谱(代表材料的制造历史),可以考虑工艺链参数对结果属性的影响。本文展示了如何从文献中收集包含各种材料的疲劳数据库。在对数据进行后处理和整理后,从多个方面讨论了机械性能的机器学习预测。定义了一个领域本体,其中包含用例的相关类定义。在应用数据集成和映射工作流程后,展示了如何使用描述材料制造历史的知识图谱系统地查询数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Digital Methods for the Fatigue Assessment of Engineering Steels
Engineering steels are used for a wide range of applications in which their fatigue behavior is a crucial design factor. The fatigue properties depend on various influencing factors such as chemical composition, heat treatment, surface properties, load parameters, microstructure, and others. During product development, various material characterization and qualification experiments are mandatory. For a faster and more cost‐efficient development, data driven methods (machine learning) promise to replace or to complement material testing by prediction of the fatigue strength. With an ontology‐based, semantically‐linked knowledge graph, representing the manufacturing history of the material, the influence of the parameters of the process chain on the resulting properties can be accounted for. Herein, it is shown how a fatigue database containing a wide range of materials is assembled from literature. After postprocessing and curation of the data, machine learning predictions of mechanical properties are discussed under multiple aspects. A domain ontology is defined, containing the relevant class definitions for the use case. After applying a data integration and mapping workflow, it is shown how the data can be systematically queried using knowledge graphs describing the manufacturing history of the materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Engineering Materials
Advanced Engineering Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
5.60%
发文量
544
审稿时长
1.7 months
期刊介绍: Advanced Engineering Materials is the membership journal of three leading European Materials Societies - German Materials Society/DGM, - French Materials Society/SF2M, - Swiss Materials Federation/SVMT.
期刊最新文献
Masthead Combining Chemical Vapor Deposition and Spark Plasma Sintering for the Production of Tungsten Fiber-Reinforced Tungsten (Hybrid – Wf/W) Comparative Study of Room and Cryogenic Deformation Behavior of Additive Manufactured Ti–6Al–4V Alloy Ultrasonic Punching with Inkjet-Printed Dot Array for Fabrication of Perforated Metal Pattern as Transparent Heater Self-Healing Waterborne Polyurethanes as a Sustainable Gel Electrolyte for Flexible Electrochromic Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1