确定城市增长的方法基准:土耳其埃斯基谢希尔的时空预测

IF 2 4区 社会学 Q3 ENVIRONMENTAL STUDIES Applied Spatial Analysis and Policy Pub Date : 2024-08-10 DOI:10.1007/s12061-024-09592-9
Oznur Isinkaralar
{"title":"确定城市增长的方法基准:土耳其埃斯基谢希尔的时空预测","authors":"Oznur Isinkaralar","doi":"10.1007/s12061-024-09592-9","DOIUrl":null,"url":null,"abstract":"<div><p>Urban growth changes spatial uses over time due to different dynamics. These processes cause many physical, environmental, and socioeconomic problems, such as climate change, pollution, and population-related events. Therefore, it is essential to predict future urban expansion to produce effective policies in sustainable urban planning and make long-term plans. Many models, such as dynamic, statistical, and Cellular Automata and Markov Chain (CA-MC) models, are used in geographic information system (GIS) environments to meet the high-performance requirements of land use modeling. This study estimated the growth of settled areas in Eskişehir city center using models developed using two different methods. In this context, settled areas in the city center were examined within the scope of 1990–2018, and the growth areas of settled areas in 2046 were predicted using the CA-Markov method in Model 1: Quantum GIS (QGIS) MOLUSCE plugin and Model 2: IDRISI Selva. While settled areas are continuously increasing, other urban areas are decreasing. Model 1 predicts an increase of 1195 ha in settled areas by 2046, while Model 2 predicts an increase of 45,022 ha. At the same time, it is concluded that settled areas will grow in a central location in Model 1, while they will spread in an east-west extension in Model 2. The study results show that QGIS-based modeling predicts more limited spatial growth than IDRISI Selva. The research interprets growth in terms of the staging of urban services, the population size of neighboring cities, distances, and income levels based on the internal and external dynamics of the city.</p></div>","PeriodicalId":46392,"journal":{"name":"Applied Spatial Analysis and Policy","volume":"17 4","pages":"1485 - 1495"},"PeriodicalIF":2.0000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12061-024-09592-9.pdf","citationCount":"0","resultStr":"{\"title\":\"A Methodological Benchmark in Determining the Urban Growth: Spatiotemporal Projections for Eskişehir, Türkiye\",\"authors\":\"Oznur Isinkaralar\",\"doi\":\"10.1007/s12061-024-09592-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Urban growth changes spatial uses over time due to different dynamics. These processes cause many physical, environmental, and socioeconomic problems, such as climate change, pollution, and population-related events. Therefore, it is essential to predict future urban expansion to produce effective policies in sustainable urban planning and make long-term plans. Many models, such as dynamic, statistical, and Cellular Automata and Markov Chain (CA-MC) models, are used in geographic information system (GIS) environments to meet the high-performance requirements of land use modeling. This study estimated the growth of settled areas in Eskişehir city center using models developed using two different methods. In this context, settled areas in the city center were examined within the scope of 1990–2018, and the growth areas of settled areas in 2046 were predicted using the CA-Markov method in Model 1: Quantum GIS (QGIS) MOLUSCE plugin and Model 2: IDRISI Selva. While settled areas are continuously increasing, other urban areas are decreasing. Model 1 predicts an increase of 1195 ha in settled areas by 2046, while Model 2 predicts an increase of 45,022 ha. At the same time, it is concluded that settled areas will grow in a central location in Model 1, while they will spread in an east-west extension in Model 2. The study results show that QGIS-based modeling predicts more limited spatial growth than IDRISI Selva. The research interprets growth in terms of the staging of urban services, the population size of neighboring cities, distances, and income levels based on the internal and external dynamics of the city.</p></div>\",\"PeriodicalId\":46392,\"journal\":{\"name\":\"Applied Spatial Analysis and Policy\",\"volume\":\"17 4\",\"pages\":\"1485 - 1495\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s12061-024-09592-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Spatial Analysis and Policy\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12061-024-09592-9\",\"RegionNum\":4,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Spatial Analysis and Policy","FirstCategoryId":"90","ListUrlMain":"https://link.springer.com/article/10.1007/s12061-024-09592-9","RegionNum":4,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0

摘要

随着时间的推移,城市增长会因不同的动态变化而改变空间用途。这些过程会导致许多物理、环境和社会经济问题,如气候变化、污染和人口相关事件。因此,必须预测未来的城市扩张,以制定有效的可持续城市规划政策和长期计划。地理信息系统(GIS)环境中使用了许多模型,如动态模型、统计模型、细胞自动机和马尔可夫链(CA-MC)模型,以满足土地利用建模的高性能要求。本研究使用两种不同方法开发的模型估算了埃斯基谢希尔市中心定居区的增长情况。在此背景下,在 1990-2018 年的范围内考察了市中心的定居区,并在模型 1:Quantum GIS (QGIS) MOLUSCE 插件和模型 2:IDRISI Selva 中使用 CA-Markov 方法预测了 2046 年定居区的增长区域。在定居区持续增加的同时,其他城市区域却在减少。模型 1 预测到 2046 年定居区面积将增加 1195 公顷,而模型 2 预测将增加 45022 公顷。同时,模型 1 预测定居区将在中心位置增长,而模型 2 预测定居区将向东西方向扩展。研究结果表明,基于 QGIS 的模型比 IDRISI Selva 预测的空间增长更为有限。研究从城市服务设施的分期、邻近城市的人口规模、距离以及基于城市内部和外部动态的收入水平等方面对增长进行了解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Methodological Benchmark in Determining the Urban Growth: Spatiotemporal Projections for Eskişehir, Türkiye

Urban growth changes spatial uses over time due to different dynamics. These processes cause many physical, environmental, and socioeconomic problems, such as climate change, pollution, and population-related events. Therefore, it is essential to predict future urban expansion to produce effective policies in sustainable urban planning and make long-term plans. Many models, such as dynamic, statistical, and Cellular Automata and Markov Chain (CA-MC) models, are used in geographic information system (GIS) environments to meet the high-performance requirements of land use modeling. This study estimated the growth of settled areas in Eskişehir city center using models developed using two different methods. In this context, settled areas in the city center were examined within the scope of 1990–2018, and the growth areas of settled areas in 2046 were predicted using the CA-Markov method in Model 1: Quantum GIS (QGIS) MOLUSCE plugin and Model 2: IDRISI Selva. While settled areas are continuously increasing, other urban areas are decreasing. Model 1 predicts an increase of 1195 ha in settled areas by 2046, while Model 2 predicts an increase of 45,022 ha. At the same time, it is concluded that settled areas will grow in a central location in Model 1, while they will spread in an east-west extension in Model 2. The study results show that QGIS-based modeling predicts more limited spatial growth than IDRISI Selva. The research interprets growth in terms of the staging of urban services, the population size of neighboring cities, distances, and income levels based on the internal and external dynamics of the city.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
5.30%
发文量
57
期刊介绍: Description The journal has an applied focus: it actively promotes the importance of geographical research in real world settings It is policy-relevant: it seeks both a readership and contributions from practitioners as well as academics The substantive foundation is spatial analysis: the use of quantitative techniques to identify patterns and processes within geographic environments The combination of these points, which are fully reflected in the naming of the journal, establishes a unique position in the marketplace. RationaleA geographical perspective has always been crucial to the understanding of the social and physical organisation of the world around us. The techniques of spatial analysis provide a powerful means for the assembly and interpretation of evidence, and thus to address critical questions about issues such as crime and deprivation, immigration and demographic restructuring, retailing activity and employment change, resource management and environmental improvement. Many of these issues are equally important to academic research as they are to policy makers and Applied Spatial Analysis and Policy aims to close the gap between these two perspectives by providing a forum for discussion of applied research in a range of different contexts  Topical and interdisciplinaryIncreasingly government organisations, administrative agencies and private businesses are requiring research to support their ‘evidence-based’ strategies or policies. Geographical location is critical in much of this work which extends across a wide range of disciplines including demography, actuarial sciences, statistics, public sector planning, business planning, economics, epidemiology, sociology, social policy, health research, environmental management.   FocusApplied Spatial Analysis and Policy will draw on applied research from diverse problem domains, such as transport, policing, education, health, environment and leisure, in different international contexts. The journal will therefore provide insights into the variations in phenomena that exist across space, it will provide evidence for comparative policy analysis between domains and between locations, and stimulate ideas about the translation of spatial analysis methods and techniques across varied policy contexts. It is essential to know how to measure, monitor and understand spatial distributions, many of which have implications for those with responsibility to plan and enhance the society and the environment in which we all exist.   Readership and Editorial BoardAs a journal focused on applications of methods of spatial analysis, Applied Spatial Analysis and Policy will be of interest to scholars and students in a wide range of academic fields, to practitioners in government and administrative agencies and to consultants in private sector organisations. The Editorial Board reflects the international and multidisciplinary nature of the journal.
期刊最新文献
Downscaling Amphibian Species Richness Maps to Explore the Role of Spatial Scale in Conservation Beyond Numbers: Mapping Poverty Disparities in Pakistan through a Spatial Lens Linking Housing Prices and Innovation: The Role of Commuting Distance? Associations Between Cycling Facilities and Residential Property Values: A Case Study in a Growing Mid-sized City in Canada Exploring the Heterogenous Impacts of the Accessibility on Urban–Rural Disparity in Mountainous Regions of China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1