利用 CRISPR/Cas9 工程异源诱导多能干细胞研究 MYH7 中 p.M659I (c.1977G > A) 这一意义不明的变异对肥厚型心肌病发病的致病作用

IF 4.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY International Journal of Molecular Sciences Pub Date : 2024-08-09 DOI:10.3390/ijms25168695
S. Pavlova, A. E. Shulgina, S. M. Zakian, E. V. Dementyeva
{"title":"利用 CRISPR/Cas9 工程异源诱导多能干细胞研究 MYH7 中 p.M659I (c.1977G > A) 这一意义不明的变异对肥厚型心肌病发病的致病作用","authors":"S. Pavlova, A. E. Shulgina, S. M. Zakian, E. V. Dementyeva","doi":"10.3390/ijms25168695","DOIUrl":null,"url":null,"abstract":"Hypertrophic cardiomyopathy (HCM) is a cardiovascular pathology that is caused by variants in genes encoding sarcomere-associated proteins. However, the clinical significance of numerous variants in HCM-associated genes is still unknown. CRISPR/Cas9 is a tool of nucleotide sequence editing that allows for the unraveling of different biological tasks. In this study, introducing a mutation with CRISPR/Cas9 into induced pluripotent stem cells (iPSCs) of a healthy donor and the directed differentiation of the isogenic iPSC lines into cardiomyocytes were used to assess the pathogenicity of a variant of unknown significance, p.M659I (c.1977G > A) in MYH7, which was found previously in an HCM patient. Using two single-stranded donor oligonucleotides with and without the p.M659I (c.1977G > A) mutation, together with CRISPR/Cas9, an iPSC line heterozygous at the p.M659I (c.1977G > A) variant in MYH7 was generated. No CRISPR/Cas9 off-target activity was observed. The iPSC line with the introduced p.M659I (c.1977G > A) mutation in MYH7 retained its pluripotent state and normal karyotype. Compared to the isogenic control, cardiomyocytes derived from the iPSCs with the introduced p.M659I (c.1977G > A) mutation in MYH7 recapitulated known HCM features: enlarged size, elevated diastolic calcium level, changes in the expression of HCM-related genes, and disrupted energy metabolism. These findings indicate the pathogenicity of the variant.","PeriodicalId":49179,"journal":{"name":"International Journal of Molecular Sciences","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Studying Pathogenetic Contribution of a Variant of Unknown Significance, p.M659I (c.1977G > A) in MYH7, to the Development of Hypertrophic Cardiomyopathy Using CRISPR/Cas9-Engineered Isogenic Induced Pluripotent Stem Cells\",\"authors\":\"S. Pavlova, A. E. Shulgina, S. M. Zakian, E. V. Dementyeva\",\"doi\":\"10.3390/ijms25168695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hypertrophic cardiomyopathy (HCM) is a cardiovascular pathology that is caused by variants in genes encoding sarcomere-associated proteins. However, the clinical significance of numerous variants in HCM-associated genes is still unknown. CRISPR/Cas9 is a tool of nucleotide sequence editing that allows for the unraveling of different biological tasks. In this study, introducing a mutation with CRISPR/Cas9 into induced pluripotent stem cells (iPSCs) of a healthy donor and the directed differentiation of the isogenic iPSC lines into cardiomyocytes were used to assess the pathogenicity of a variant of unknown significance, p.M659I (c.1977G > A) in MYH7, which was found previously in an HCM patient. Using two single-stranded donor oligonucleotides with and without the p.M659I (c.1977G > A) mutation, together with CRISPR/Cas9, an iPSC line heterozygous at the p.M659I (c.1977G > A) variant in MYH7 was generated. No CRISPR/Cas9 off-target activity was observed. The iPSC line with the introduced p.M659I (c.1977G > A) mutation in MYH7 retained its pluripotent state and normal karyotype. Compared to the isogenic control, cardiomyocytes derived from the iPSCs with the introduced p.M659I (c.1977G > A) mutation in MYH7 recapitulated known HCM features: enlarged size, elevated diastolic calcium level, changes in the expression of HCM-related genes, and disrupted energy metabolism. These findings indicate the pathogenicity of the variant.\",\"PeriodicalId\":49179,\"journal\":{\"name\":\"International Journal of Molecular Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Molecular Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/ijms25168695\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms25168695","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肥厚型心肌病(HCM)是一种心血管疾病,由编码肌节相关蛋白的基因变异引起。然而,HCM 相关基因中的许多变异的临床意义尚不清楚。CRISPR/Cas9 是一种核苷酸序列编辑工具,可用于揭示不同的生物学任务。在这项研究中,利用 CRISPR/Cas9 向健康供体的诱导多能干细胞(iPSCs)中导入突变,并将异源 iPSC 株定向分化为心肌细胞,从而评估了 MYH7 中一个意义不明的变异 p.M659I (c.1977G > A)的致病性。利用含有和不含 p.M659I (c.1977G > A) 突变的两条单链供体寡核苷酸,再加上 CRISPR/Cas9,产生了一个杂合 MYH7 中 p.M659I (c.1977G > A) 变异的 iPSC 株系。没有观察到 CRISPR/Cas9 的脱靶活性。引入了 MYH7 p.M659I(c.1977G > A)突变的 iPSC 株系保持了多能状态和正常核型。与同源对照组相比,从导入了 MYH7 基因 p.M659I(c.1977G > A)突变的 iPSCs 衍生的心肌细胞再现了已知的 HCM 特征:体积增大、舒张期钙水平升高、HCM 相关基因的表达发生变化以及能量代谢紊乱。这些发现表明该变异具有致病性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Studying Pathogenetic Contribution of a Variant of Unknown Significance, p.M659I (c.1977G > A) in MYH7, to the Development of Hypertrophic Cardiomyopathy Using CRISPR/Cas9-Engineered Isogenic Induced Pluripotent Stem Cells
Hypertrophic cardiomyopathy (HCM) is a cardiovascular pathology that is caused by variants in genes encoding sarcomere-associated proteins. However, the clinical significance of numerous variants in HCM-associated genes is still unknown. CRISPR/Cas9 is a tool of nucleotide sequence editing that allows for the unraveling of different biological tasks. In this study, introducing a mutation with CRISPR/Cas9 into induced pluripotent stem cells (iPSCs) of a healthy donor and the directed differentiation of the isogenic iPSC lines into cardiomyocytes were used to assess the pathogenicity of a variant of unknown significance, p.M659I (c.1977G > A) in MYH7, which was found previously in an HCM patient. Using two single-stranded donor oligonucleotides with and without the p.M659I (c.1977G > A) mutation, together with CRISPR/Cas9, an iPSC line heterozygous at the p.M659I (c.1977G > A) variant in MYH7 was generated. No CRISPR/Cas9 off-target activity was observed. The iPSC line with the introduced p.M659I (c.1977G > A) mutation in MYH7 retained its pluripotent state and normal karyotype. Compared to the isogenic control, cardiomyocytes derived from the iPSCs with the introduced p.M659I (c.1977G > A) mutation in MYH7 recapitulated known HCM features: enlarged size, elevated diastolic calcium level, changes in the expression of HCM-related genes, and disrupted energy metabolism. These findings indicate the pathogenicity of the variant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Molecular Sciences
International Journal of Molecular Sciences Chemistry-Organic Chemistry
CiteScore
8.10
自引率
10.70%
发文量
13472
审稿时长
17.49 days
期刊介绍: The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).
期刊最新文献
Three Years On: The Role of Pegcetacoplan in Paroxysmal Nocturnal Hemoglobinuria (PNH) since Its Initial Approval Brain Region-Specific Expression Levels of Synuclein Genes in an Acid Sphingomyelinase Knockout Mouse Model: Correlation with Depression-/Anxiety-like Behavior and Locomotor Activity in the Absence of Genotypic Variation Integrated Transcriptomic–Metabolomic Analysis Reveals the Effect of Different Light Intensities on Ovarian Development in Chickens The Association between IL-1β and IL-18 Levels, Gut Barrier Disruption, and Monocyte Activation during Chronic Simian Immunodeficiency Virus Infection and Long-Term Suppressive Antiretroviral Therapy One-Step Genetic Modification by Embryonic Doral Aorta Injection of Adenoviral CRISPR/Cas9 Vector in Chicken
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1