Stefan Eichwald, Lukas Polte, Janik Hense, Benedikt Nilges, Prof. Andreas Jupke, Prof. Niklas von der Assen
{"title":"综合磷化氢和钢铁生产:结合工艺优化和生命周期评估,最大限度减少温室气体排放","authors":"Stefan Eichwald, Lukas Polte, Janik Hense, Benedikt Nilges, Prof. Andreas Jupke, Prof. Niklas von der Assen","doi":"10.1002/cite.202400052","DOIUrl":null,"url":null,"abstract":"<p>Harnessing basic oxygen furnace gas (BOFG) from steel mills as an alternative carbon source is a promising option to reduce greenhouse gas (GHG) emissions. This study explores two process concepts to purify CO from BOFG for subsequent phosgene synthesis: (i) vacuum pressure swing adsorption (VPSA) yielding pure CO, and (ii) CO<sub>2</sub> separation via monoethanolamine (MEA) absorption producing CO-enriched gas. By combining process optimization with life cycle assessment (LCA), process parameters are identified that minimize GHG emissions. The MEA concept can reduce emissions by up to 60 %, whereas the VPSA concept achieves a reduction of 47 %. Utilizing renewable energy enables further reductions, indicating additional environmental benefits in the future. Overall, both processes effectively produce low-carbon CO for phosgene synthesis, with increasing environmental benefits in future energy systems.</p>","PeriodicalId":9912,"journal":{"name":"Chemie Ingenieur Technik","volume":"96 9","pages":"1256-1267"},"PeriodicalIF":1.5000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cite.202400052","citationCount":"0","resultStr":"{\"title\":\"Integrated Phosgene and Steel Production: Combining Process Optimization and Life Cycle Assessment to Minimize Greenhouse Gas Emissions\",\"authors\":\"Stefan Eichwald, Lukas Polte, Janik Hense, Benedikt Nilges, Prof. Andreas Jupke, Prof. Niklas von der Assen\",\"doi\":\"10.1002/cite.202400052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Harnessing basic oxygen furnace gas (BOFG) from steel mills as an alternative carbon source is a promising option to reduce greenhouse gas (GHG) emissions. This study explores two process concepts to purify CO from BOFG for subsequent phosgene synthesis: (i) vacuum pressure swing adsorption (VPSA) yielding pure CO, and (ii) CO<sub>2</sub> separation via monoethanolamine (MEA) absorption producing CO-enriched gas. By combining process optimization with life cycle assessment (LCA), process parameters are identified that minimize GHG emissions. The MEA concept can reduce emissions by up to 60 %, whereas the VPSA concept achieves a reduction of 47 %. Utilizing renewable energy enables further reductions, indicating additional environmental benefits in the future. Overall, both processes effectively produce low-carbon CO for phosgene synthesis, with increasing environmental benefits in future energy systems.</p>\",\"PeriodicalId\":9912,\"journal\":{\"name\":\"Chemie Ingenieur Technik\",\"volume\":\"96 9\",\"pages\":\"1256-1267\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cite.202400052\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemie Ingenieur Technik\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cite.202400052\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemie Ingenieur Technik","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cite.202400052","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Integrated Phosgene and Steel Production: Combining Process Optimization and Life Cycle Assessment to Minimize Greenhouse Gas Emissions
Harnessing basic oxygen furnace gas (BOFG) from steel mills as an alternative carbon source is a promising option to reduce greenhouse gas (GHG) emissions. This study explores two process concepts to purify CO from BOFG for subsequent phosgene synthesis: (i) vacuum pressure swing adsorption (VPSA) yielding pure CO, and (ii) CO2 separation via monoethanolamine (MEA) absorption producing CO-enriched gas. By combining process optimization with life cycle assessment (LCA), process parameters are identified that minimize GHG emissions. The MEA concept can reduce emissions by up to 60 %, whereas the VPSA concept achieves a reduction of 47 %. Utilizing renewable energy enables further reductions, indicating additional environmental benefits in the future. Overall, both processes effectively produce low-carbon CO for phosgene synthesis, with increasing environmental benefits in future energy systems.
期刊介绍:
Die Chemie Ingenieur Technik ist die wohl angesehenste deutschsprachige Zeitschrift für Verfahrensingenieure, technische Chemiker, Apparatebauer und Biotechnologen. Als Fachorgan von DECHEMA, GDCh und VDI-GVC gilt sie als das unverzichtbare Forum für den Erfahrungsaustausch zwischen Forschern und Anwendern aus Industrie, Forschung und Entwicklung. Wissenschaftlicher Fortschritt und Praxisnähe: Eine Kombination, die es nur in der CIT gibt!