通过范德华反铁磁体 CrPS4 的自旋翻转转变探究磁晶各向异性的弱极限

IF 8.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Npg Asia Materials Pub Date : 2024-08-09 DOI:10.1038/s41427-024-00559-3
Jae Yeon Seo, Sunghyun Lim, Hyun Jun Shin, Ki Won Jeong, Jae Min Hong, Kyungsun Moon, Mi Kyung Kim, Nara Lee, Young Jai Choi
{"title":"通过范德华反铁磁体 CrPS4 的自旋翻转转变探究磁晶各向异性的弱极限","authors":"Jae Yeon Seo, Sunghyun Lim, Hyun Jun Shin, Ki Won Jeong, Jae Min Hong, Kyungsun Moon, Mi Kyung Kim, Nara Lee, Young Jai Choi","doi":"10.1038/s41427-024-00559-3","DOIUrl":null,"url":null,"abstract":"The influence of magnetocrystalline anisotropy (MCA) on antiferromagnetism is elucidated through the characterization of the spin‒flop transition. However, due to a lack of suitable candidates for investigation, a detailed understanding of the preservation of the spin‒flop transition in the presence of low MCA energy remains elusive. In this study, we introduce CrPS4, which is a two-dimensional van der Waals antiferromagnet, as an ideal system to explore the exceedingly weak limit of the thermally-evolved MCA energy. By employing a uniaxially anisotropic spin model and fitting it to the experimental magnetic properties, we quantify the MCA energy and identify the discernible spin configurations in different magnetic phases. Notably, even at the limit of extremely weak MCA, with a mere 0.12% of the interlayer antiferromagnetic exchange interaction at T = 33 K, which is slightly below the Néel temperature (TN) of 38 K, the spin‒flop transition remains intact. We further establish a direct correlation between the visualized spin arrangements and the progressive reversal of magnetic torque induced by rotating magnetic fields. This analysis reveals the essential role of MCA in antiferromagnetism, thus extending our understanding to previously undetected limits and providing valuable insights for the development of spin-processing functionalities based on van der Waals magnets. Though the impact of magnetic anisotropy on antiferromagnetism is manifested in spin-flop transition, understanding the preservation of this transition in weak anisotropy remains elusive. By adopting an anisotropic spin model, we find that the spin-flop transition remains intact in extremely weak anisotropy, with a mere 0.12% of interlayer exchange interaction at 33 K, slightly below the Néel temperature of 38 K. We further establish a direct relationship between the visualized spin arrangements and the progressive reversal of magnetic torque in rotating magnetic fields. Our analysis provides valuable insights for exploring novel phenomena in the realm of low-dimensional magnetism.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"16 1","pages":"1-9"},"PeriodicalIF":8.6000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-024-00559-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Probing the weak limit of magnetocrystalline anisotropy through a spin‒flop transition in the van der Waals antiferromagnet CrPS4\",\"authors\":\"Jae Yeon Seo, Sunghyun Lim, Hyun Jun Shin, Ki Won Jeong, Jae Min Hong, Kyungsun Moon, Mi Kyung Kim, Nara Lee, Young Jai Choi\",\"doi\":\"10.1038/s41427-024-00559-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The influence of magnetocrystalline anisotropy (MCA) on antiferromagnetism is elucidated through the characterization of the spin‒flop transition. However, due to a lack of suitable candidates for investigation, a detailed understanding of the preservation of the spin‒flop transition in the presence of low MCA energy remains elusive. In this study, we introduce CrPS4, which is a two-dimensional van der Waals antiferromagnet, as an ideal system to explore the exceedingly weak limit of the thermally-evolved MCA energy. By employing a uniaxially anisotropic spin model and fitting it to the experimental magnetic properties, we quantify the MCA energy and identify the discernible spin configurations in different magnetic phases. Notably, even at the limit of extremely weak MCA, with a mere 0.12% of the interlayer antiferromagnetic exchange interaction at T = 33 K, which is slightly below the Néel temperature (TN) of 38 K, the spin‒flop transition remains intact. We further establish a direct correlation between the visualized spin arrangements and the progressive reversal of magnetic torque induced by rotating magnetic fields. This analysis reveals the essential role of MCA in antiferromagnetism, thus extending our understanding to previously undetected limits and providing valuable insights for the development of spin-processing functionalities based on van der Waals magnets. Though the impact of magnetic anisotropy on antiferromagnetism is manifested in spin-flop transition, understanding the preservation of this transition in weak anisotropy remains elusive. By adopting an anisotropic spin model, we find that the spin-flop transition remains intact in extremely weak anisotropy, with a mere 0.12% of interlayer exchange interaction at 33 K, slightly below the Néel temperature of 38 K. We further establish a direct relationship between the visualized spin arrangements and the progressive reversal of magnetic torque in rotating magnetic fields. Our analysis provides valuable insights for exploring novel phenomena in the realm of low-dimensional magnetism.\",\"PeriodicalId\":19382,\"journal\":{\"name\":\"Npg Asia Materials\",\"volume\":\"16 1\",\"pages\":\"1-9\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41427-024-00559-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Npg Asia Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41427-024-00559-3\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Npg Asia Materials","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41427-024-00559-3","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Probing the weak limit of magnetocrystalline anisotropy through a spin‒flop transition in the van der Waals antiferromagnet CrPS4
The influence of magnetocrystalline anisotropy (MCA) on antiferromagnetism is elucidated through the characterization of the spin‒flop transition. However, due to a lack of suitable candidates for investigation, a detailed understanding of the preservation of the spin‒flop transition in the presence of low MCA energy remains elusive. In this study, we introduce CrPS4, which is a two-dimensional van der Waals antiferromagnet, as an ideal system to explore the exceedingly weak limit of the thermally-evolved MCA energy. By employing a uniaxially anisotropic spin model and fitting it to the experimental magnetic properties, we quantify the MCA energy and identify the discernible spin configurations in different magnetic phases. Notably, even at the limit of extremely weak MCA, with a mere 0.12% of the interlayer antiferromagnetic exchange interaction at T = 33 K, which is slightly below the Néel temperature (TN) of 38 K, the spin‒flop transition remains intact. We further establish a direct correlation between the visualized spin arrangements and the progressive reversal of magnetic torque induced by rotating magnetic fields. This analysis reveals the essential role of MCA in antiferromagnetism, thus extending our understanding to previously undetected limits and providing valuable insights for the development of spin-processing functionalities based on van der Waals magnets. Though the impact of magnetic anisotropy on antiferromagnetism is manifested in spin-flop transition, understanding the preservation of this transition in weak anisotropy remains elusive. By adopting an anisotropic spin model, we find that the spin-flop transition remains intact in extremely weak anisotropy, with a mere 0.12% of interlayer exchange interaction at 33 K, slightly below the Néel temperature of 38 K. We further establish a direct relationship between the visualized spin arrangements and the progressive reversal of magnetic torque in rotating magnetic fields. Our analysis provides valuable insights for exploring novel phenomena in the realm of low-dimensional magnetism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Npg Asia Materials
Npg Asia Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
15.40
自引率
1.00%
发文量
87
审稿时长
2 months
期刊介绍: NPG Asia Materials is an open access, international journal that publishes peer-reviewed review and primary research articles in the field of materials sciences. The journal has a global outlook and reach, with a base in the Asia-Pacific region to reflect the significant and growing output of materials research from this area. The target audience for NPG Asia Materials is scientists and researchers involved in materials research, covering a wide range of disciplines including physical and chemical sciences, biotechnology, and nanotechnology. The journal particularly welcomes high-quality articles from rapidly advancing areas that bridge the gap between materials science and engineering, as well as the classical disciplines of physics, chemistry, and biology. NPG Asia Materials is abstracted/indexed in Journal Citation Reports/Science Edition Web of Knowledge, Google Scholar, Chemical Abstract Services, Scopus, Ulrichsweb (ProQuest), and Scirus.
期刊最新文献
Relationship between network topology and negative electrode properties in Wadsley–Roth phase TiNb2O7 Recent advances in high-entropy superconductors Intrinsically anisotropic 1D NbTe4 for self-powered polarization-sensitive photodetection Band anisotropy and effective mass renormalization in strained metallic VO2 (101) thin films Molecular beam epitaxial In2Te3 electronic devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1