A. Craddock, Anne Lazenby, Gabriel Bello Portmann, Rourke Sekelsky, Mael Flament, M. Namazi
{"title":"利用部署在纽约市的光纤自动分发偏振-纠缠光子","authors":"A. Craddock, Anne Lazenby, Gabriel Bello Portmann, Rourke Sekelsky, Mael Flament, M. Namazi","doi":"10.1103/prxquantum.5.030330","DOIUrl":null,"url":null,"abstract":"The distribution of high-fidelity high-rate entanglement over telecommunication infrastructure is one of the main paths toward large-scale quantum networks, enabling applications such as quantum encryption and network protection, blind quantum computing, distributed quantum computing, and distributed quantum sensing. However, the fragile nature of entangled photons operating in real-world fiber infrastructure has historically limited continuous operation of such networks. Here, we present a fully automated system capable of distributing polarization-entangled photons over a 34-km deployed fiber in New York City, achieving high rates of nearly 5×105 pairs/s. Separately, we demonstrate a high fidelity of approximately 99% for rates up to 2×104 pairs/s. Lastly, we achieve 15 days of continuous distribution, with a network up-time of 99.84%. Our work paves the way for practical deployment of always-on entanglement-based networks with rates and fidelity adequate for many current and future use cases.\n \n \n \n \n Published by the American Physical Society\n 2024\n \n \n","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"48 44","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated Distribution of Polarization-Entangled Photons Using Deployed New York City Fibers\",\"authors\":\"A. Craddock, Anne Lazenby, Gabriel Bello Portmann, Rourke Sekelsky, Mael Flament, M. Namazi\",\"doi\":\"10.1103/prxquantum.5.030330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The distribution of high-fidelity high-rate entanglement over telecommunication infrastructure is one of the main paths toward large-scale quantum networks, enabling applications such as quantum encryption and network protection, blind quantum computing, distributed quantum computing, and distributed quantum sensing. However, the fragile nature of entangled photons operating in real-world fiber infrastructure has historically limited continuous operation of such networks. Here, we present a fully automated system capable of distributing polarization-entangled photons over a 34-km deployed fiber in New York City, achieving high rates of nearly 5×105 pairs/s. Separately, we demonstrate a high fidelity of approximately 99% for rates up to 2×104 pairs/s. Lastly, we achieve 15 days of continuous distribution, with a network up-time of 99.84%. Our work paves the way for practical deployment of always-on entanglement-based networks with rates and fidelity adequate for many current and future use cases.\\n \\n \\n \\n \\n Published by the American Physical Society\\n 2024\\n \\n \\n\",\"PeriodicalId\":501296,\"journal\":{\"name\":\"PRX Quantum\",\"volume\":\"48 44\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PRX Quantum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/prxquantum.5.030330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxquantum.5.030330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automated Distribution of Polarization-Entangled Photons Using Deployed New York City Fibers
The distribution of high-fidelity high-rate entanglement over telecommunication infrastructure is one of the main paths toward large-scale quantum networks, enabling applications such as quantum encryption and network protection, blind quantum computing, distributed quantum computing, and distributed quantum sensing. However, the fragile nature of entangled photons operating in real-world fiber infrastructure has historically limited continuous operation of such networks. Here, we present a fully automated system capable of distributing polarization-entangled photons over a 34-km deployed fiber in New York City, achieving high rates of nearly 5×105 pairs/s. Separately, we demonstrate a high fidelity of approximately 99% for rates up to 2×104 pairs/s. Lastly, we achieve 15 days of continuous distribution, with a network up-time of 99.84%. Our work paves the way for practical deployment of always-on entanglement-based networks with rates and fidelity adequate for many current and future use cases.
Published by the American Physical Society
2024