毫米波处理及其生物效应发展的进展

IF 4.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY International Journal of Molecular Sciences Pub Date : 2024-08-08 DOI:10.3390/ijms25168638
Rui Jing, Zhenqi Jiang, Xiaoying Tang
{"title":"毫米波处理及其生物效应发展的进展","authors":"Rui Jing, Zhenqi Jiang, Xiaoying Tang","doi":"10.3390/ijms25168638","DOIUrl":null,"url":null,"abstract":"This comprehensive review critically examines the current state of research on the biological effects of millimeter-wave (MMW) therapy and its potential implications for disease treatment. By investigating both the thermal and non-thermal impacts of MMWs, we elucidate cellular-level alterations, including changes in ion channels and signaling pathways. Our analysis encompasses MMW’s therapeutic prospects in oncology, such as inducing apoptosis, managing pain, and modulating immunity through cytokine regulation and immune cell activation. By employing a rigorous methodology involving an extensive database search and stringent inclusion criteria, we emphasize the need for standardized protocols to enhance the reliability of future research. Although MMWs exhibit promising therapeutic potential, our findings highlight the urgent need for further elucidation of non-thermal mechanisms and rigorous safety assessments, considering the intricate nature of MMW interactions and inconsistent study outcomes. This review underscores the importance of focused research on the biological mechanisms of MMWs and the identification of optimal frequencies to fully harness their therapeutic capabilities. However, we acknowledge the challenges of variable study quality and the necessity for advanced quality control measures to ensure the reproducibility and comparability of future investigations. In conclusion, while MMW therapy holds promise as a novel therapeutic modality, further research is imperative to unravel its complex biological effects, establish safety profiles, and optimize treatment protocols before widespread clinical application.","PeriodicalId":49179,"journal":{"name":"International Journal of Molecular Sciences","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in Millimeter-Wave Treatment and Its Biological Effects Development\",\"authors\":\"Rui Jing, Zhenqi Jiang, Xiaoying Tang\",\"doi\":\"10.3390/ijms25168638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This comprehensive review critically examines the current state of research on the biological effects of millimeter-wave (MMW) therapy and its potential implications for disease treatment. By investigating both the thermal and non-thermal impacts of MMWs, we elucidate cellular-level alterations, including changes in ion channels and signaling pathways. Our analysis encompasses MMW’s therapeutic prospects in oncology, such as inducing apoptosis, managing pain, and modulating immunity through cytokine regulation and immune cell activation. By employing a rigorous methodology involving an extensive database search and stringent inclusion criteria, we emphasize the need for standardized protocols to enhance the reliability of future research. Although MMWs exhibit promising therapeutic potential, our findings highlight the urgent need for further elucidation of non-thermal mechanisms and rigorous safety assessments, considering the intricate nature of MMW interactions and inconsistent study outcomes. This review underscores the importance of focused research on the biological mechanisms of MMWs and the identification of optimal frequencies to fully harness their therapeutic capabilities. However, we acknowledge the challenges of variable study quality and the necessity for advanced quality control measures to ensure the reproducibility and comparability of future investigations. In conclusion, while MMW therapy holds promise as a novel therapeutic modality, further research is imperative to unravel its complex biological effects, establish safety profiles, and optimize treatment protocols before widespread clinical application.\",\"PeriodicalId\":49179,\"journal\":{\"name\":\"International Journal of Molecular Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Molecular Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/ijms25168638\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms25168638","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

这篇综合评论批判性地审视了有关毫米波(MMW)疗法的生物效应及其对疾病治疗的潜在影响的研究现状。通过研究毫米波的热效应和非热效应,我们阐明了细胞层面的变化,包括离子通道和信号通路的变化。我们的分析涵盖了 MMW 在肿瘤学方面的治疗前景,例如诱导细胞凋亡、控制疼痛以及通过细胞因子调节和免疫细胞激活来调节免疫。通过采用严格的方法,包括广泛的数据库搜索和严格的纳入标准,我们强调了标准化方案的必要性,以提高未来研究的可靠性。尽管 MMWs 具有良好的治疗潜力,但考虑到 MMW 相互作用的复杂性和研究结果的不一致性,我们的研究结果强调了进一步阐明非热机制和严格安全评估的迫切需要。本综述强调了集中研究多磁场微波的生物机制和确定最佳频率以充分利用其治疗能力的重要性。不过,我们也认识到研究质量参差不齐所带来的挑战,以及采取先进的质量控制措施以确保未来研究的可重复性和可比性的必要性。总之,尽管微波治疗有望成为一种新型治疗方式,但在广泛临床应用之前,必须开展进一步的研究,以揭示其复杂的生物效应、建立安全档案并优化治疗方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advances in Millimeter-Wave Treatment and Its Biological Effects Development
This comprehensive review critically examines the current state of research on the biological effects of millimeter-wave (MMW) therapy and its potential implications for disease treatment. By investigating both the thermal and non-thermal impacts of MMWs, we elucidate cellular-level alterations, including changes in ion channels and signaling pathways. Our analysis encompasses MMW’s therapeutic prospects in oncology, such as inducing apoptosis, managing pain, and modulating immunity through cytokine regulation and immune cell activation. By employing a rigorous methodology involving an extensive database search and stringent inclusion criteria, we emphasize the need for standardized protocols to enhance the reliability of future research. Although MMWs exhibit promising therapeutic potential, our findings highlight the urgent need for further elucidation of non-thermal mechanisms and rigorous safety assessments, considering the intricate nature of MMW interactions and inconsistent study outcomes. This review underscores the importance of focused research on the biological mechanisms of MMWs and the identification of optimal frequencies to fully harness their therapeutic capabilities. However, we acknowledge the challenges of variable study quality and the necessity for advanced quality control measures to ensure the reproducibility and comparability of future investigations. In conclusion, while MMW therapy holds promise as a novel therapeutic modality, further research is imperative to unravel its complex biological effects, establish safety profiles, and optimize treatment protocols before widespread clinical application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Molecular Sciences
International Journal of Molecular Sciences Chemistry-Organic Chemistry
CiteScore
8.10
自引率
10.70%
发文量
13472
审稿时长
17.49 days
期刊介绍: The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).
期刊最新文献
Three Years On: The Role of Pegcetacoplan in Paroxysmal Nocturnal Hemoglobinuria (PNH) since Its Initial Approval Brain Region-Specific Expression Levels of Synuclein Genes in an Acid Sphingomyelinase Knockout Mouse Model: Correlation with Depression-/Anxiety-like Behavior and Locomotor Activity in the Absence of Genotypic Variation Integrated Transcriptomic–Metabolomic Analysis Reveals the Effect of Different Light Intensities on Ovarian Development in Chickens The Association between IL-1β and IL-18 Levels, Gut Barrier Disruption, and Monocyte Activation during Chronic Simian Immunodeficiency Virus Infection and Long-Term Suppressive Antiretroviral Therapy One-Step Genetic Modification by Embryonic Doral Aorta Injection of Adenoviral CRISPR/Cas9 Vector in Chicken
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1