Xinyao Zhang, Yuxiang Su, Xin Dong, Jinlin Wu, Xiaonan Su, Guanyu Dai, Anguo Liu, Wuwei Feng, Keyang Zhao, Bangjun Lei, Zhenhua Li
{"title":"应用于全向蓝光能量收集的固液弹性摆三电纳米发电机设计","authors":"Xinyao Zhang, Yuxiang Su, Xin Dong, Jinlin Wu, Xiaonan Su, Guanyu Dai, Anguo Liu, Wuwei Feng, Keyang Zhao, Bangjun Lei, Zhenhua Li","doi":"10.1002/admt.202400531","DOIUrl":null,"url":null,"abstract":"The ocean is regarded as a significant resource for renewable energy development. The use of triboelectric nanogenerators (TENGs) provides an effective approach to capturing energy from low‐frequency, random, and disorganized water waves. In this paper, the solid–liquid elastic pendulum (SLEP)‐TENG is designed for omnidirectional blue energy harvesting applications. Differentiating from traditional designs, the proposed TENG has a simple, reliable, and durable flexible pendulum structure with a spherical shell and a solid counterweight at the bottom that can absorb the impact of ocean waves efficiently. The structure also has a hollow hexagonal space that allows it to generate a larger contact area when it is subjected to wave impacts from different directions. Under low‐speed lateral motion conditions (at frequencies below 0.83 Hz), its open‐circuit voltage VOC, short circuit current ISC, and power density Pm can reach up to 486.8 V, 16.9 µA, and 10.26 W m−3, respectively, which is sufficient to power more than 450 commercial light‐emitting diodes. By storing electrical power in small capacitors, the TENG can support small power‐consuming devices, e.g., thermometers and calculators. Therefore, the SLEP‐TENG has great potential for use in combination with Internet of Things devices to enable self‐powered sensing system construction in complex ocean areas.","PeriodicalId":504693,"journal":{"name":"Advanced Materials Technologies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solid–Liquid Elastic Pendulum Triboelectric Nanogenerator Design for Application to Omnidirectional Blue Energy Harvesting\",\"authors\":\"Xinyao Zhang, Yuxiang Su, Xin Dong, Jinlin Wu, Xiaonan Su, Guanyu Dai, Anguo Liu, Wuwei Feng, Keyang Zhao, Bangjun Lei, Zhenhua Li\",\"doi\":\"10.1002/admt.202400531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ocean is regarded as a significant resource for renewable energy development. The use of triboelectric nanogenerators (TENGs) provides an effective approach to capturing energy from low‐frequency, random, and disorganized water waves. In this paper, the solid–liquid elastic pendulum (SLEP)‐TENG is designed for omnidirectional blue energy harvesting applications. Differentiating from traditional designs, the proposed TENG has a simple, reliable, and durable flexible pendulum structure with a spherical shell and a solid counterweight at the bottom that can absorb the impact of ocean waves efficiently. The structure also has a hollow hexagonal space that allows it to generate a larger contact area when it is subjected to wave impacts from different directions. Under low‐speed lateral motion conditions (at frequencies below 0.83 Hz), its open‐circuit voltage VOC, short circuit current ISC, and power density Pm can reach up to 486.8 V, 16.9 µA, and 10.26 W m−3, respectively, which is sufficient to power more than 450 commercial light‐emitting diodes. By storing electrical power in small capacitors, the TENG can support small power‐consuming devices, e.g., thermometers and calculators. Therefore, the SLEP‐TENG has great potential for use in combination with Internet of Things devices to enable self‐powered sensing system construction in complex ocean areas.\",\"PeriodicalId\":504693,\"journal\":{\"name\":\"Advanced Materials Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/admt.202400531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/admt.202400531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Solid–Liquid Elastic Pendulum Triboelectric Nanogenerator Design for Application to Omnidirectional Blue Energy Harvesting
The ocean is regarded as a significant resource for renewable energy development. The use of triboelectric nanogenerators (TENGs) provides an effective approach to capturing energy from low‐frequency, random, and disorganized water waves. In this paper, the solid–liquid elastic pendulum (SLEP)‐TENG is designed for omnidirectional blue energy harvesting applications. Differentiating from traditional designs, the proposed TENG has a simple, reliable, and durable flexible pendulum structure with a spherical shell and a solid counterweight at the bottom that can absorb the impact of ocean waves efficiently. The structure also has a hollow hexagonal space that allows it to generate a larger contact area when it is subjected to wave impacts from different directions. Under low‐speed lateral motion conditions (at frequencies below 0.83 Hz), its open‐circuit voltage VOC, short circuit current ISC, and power density Pm can reach up to 486.8 V, 16.9 µA, and 10.26 W m−3, respectively, which is sufficient to power more than 450 commercial light‐emitting diodes. By storing electrical power in small capacitors, the TENG can support small power‐consuming devices, e.g., thermometers and calculators. Therefore, the SLEP‐TENG has great potential for use in combination with Internet of Things devices to enable self‐powered sensing system construction in complex ocean areas.