金刚石互补逻辑集成电路的数值研究

IF 4.3 3区 材料科学 Q2 MATERIALS SCIENCE, COATINGS & FILMS Diamond and Related Materials Pub Date : 2024-07-31 DOI:10.1016/j.diamond.2024.111460
{"title":"金刚石互补逻辑集成电路的数值研究","authors":"","doi":"10.1016/j.diamond.2024.111460","DOIUrl":null,"url":null,"abstract":"<div><p>Silicon complementary metal oxide semiconductor (CMOS) technology drives the integrated circuit industry due to its energy efficiency. The narrow bandgap of silicon has led to the development of wide bandgap semiconductor materials, such as diamond, favored in power electronics, radiofrequency and extreme environment applications. Here we have established a model of the diamond CMOS logic inverter for the first time and successfully simulated the static and dynamic characteristics. The simulated physical model and relevant model parameters are well calibrated with experimental data of diamond p-FET in the literature. The simulation results demonstrate that the all-diamond CMOS inverters possess rail-to-rail operation and excellent inversion characteristics, with the peak gain of 83 V/V, the transition region of 0.25 V, and the noise margins for low and high level of 2.44 V and 2.26 V under V<sub>DD</sub> = 5 V. Particularly, all-diamond CMOS inverters have improved performance compared to the diamond-GaN inverters, operating at 500 °C with well-preserved inversion characteristics. This thermal reliability indicates that diamond CMOS inverters can be better monolithically integrated for applications in high-temperature environments in the future.</p></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical investigation of diamond complementary logic integrated circuits\",\"authors\":\"\",\"doi\":\"10.1016/j.diamond.2024.111460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Silicon complementary metal oxide semiconductor (CMOS) technology drives the integrated circuit industry due to its energy efficiency. The narrow bandgap of silicon has led to the development of wide bandgap semiconductor materials, such as diamond, favored in power electronics, radiofrequency and extreme environment applications. Here we have established a model of the diamond CMOS logic inverter for the first time and successfully simulated the static and dynamic characteristics. The simulated physical model and relevant model parameters are well calibrated with experimental data of diamond p-FET in the literature. The simulation results demonstrate that the all-diamond CMOS inverters possess rail-to-rail operation and excellent inversion characteristics, with the peak gain of 83 V/V, the transition region of 0.25 V, and the noise margins for low and high level of 2.44 V and 2.26 V under V<sub>DD</sub> = 5 V. Particularly, all-diamond CMOS inverters have improved performance compared to the diamond-GaN inverters, operating at 500 °C with well-preserved inversion characteristics. This thermal reliability indicates that diamond CMOS inverters can be better monolithically integrated for applications in high-temperature environments in the future.</p></div>\",\"PeriodicalId\":11266,\"journal\":{\"name\":\"Diamond and Related Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diamond and Related Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925963524006733\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diamond and Related Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925963524006733","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

摘要

硅互补金属氧化物半导体(CMOS)技术因其高能效而推动着集成电路产业的发展。硅的窄带隙导致了宽带隙半导体材料的发展,如金刚石,在电力电子、射频和极端环境应用中备受青睐。在此,我们首次建立了金刚石 CMOS 逻辑逆变器模型,并成功模拟了其静态和动态特性。仿真物理模型和相关模型参数与文献中金刚石 p-FET 的实验数据进行了很好的校准。仿真结果表明,全金刚石 CMOS 逆变器具有轨至轨工作特性和优异的反转特性,其峰值增益为 83 V/V,过渡区为 0.25 V,在 V = 5 V 的条件下,低电平和高电平的噪声裕度分别为 2.44 V 和 2.26 V。特别是,与金刚石-氮化镓逆变器相比,全金刚石 CMOS 逆变器的性能有所提高,可在 500 °C 下工作,并能很好地保持逆变特性。这种热可靠性表明,金刚石 CMOS 逆变器可以更好地进行单片集成,未来可应用于高温环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical investigation of diamond complementary logic integrated circuits

Silicon complementary metal oxide semiconductor (CMOS) technology drives the integrated circuit industry due to its energy efficiency. The narrow bandgap of silicon has led to the development of wide bandgap semiconductor materials, such as diamond, favored in power electronics, radiofrequency and extreme environment applications. Here we have established a model of the diamond CMOS logic inverter for the first time and successfully simulated the static and dynamic characteristics. The simulated physical model and relevant model parameters are well calibrated with experimental data of diamond p-FET in the literature. The simulation results demonstrate that the all-diamond CMOS inverters possess rail-to-rail operation and excellent inversion characteristics, with the peak gain of 83 V/V, the transition region of 0.25 V, and the noise margins for low and high level of 2.44 V and 2.26 V under VDD = 5 V. Particularly, all-diamond CMOS inverters have improved performance compared to the diamond-GaN inverters, operating at 500 °C with well-preserved inversion characteristics. This thermal reliability indicates that diamond CMOS inverters can be better monolithically integrated for applications in high-temperature environments in the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Diamond and Related Materials
Diamond and Related Materials 工程技术-材料科学:综合
CiteScore
6.00
自引率
14.60%
发文量
702
审稿时长
2.1 months
期刊介绍: DRM is a leading international journal that publishes new fundamental and applied research on all forms of diamond, the integration of diamond with other advanced materials and development of technologies exploiting diamond. The synthesis, characterization and processing of single crystal diamond, polycrystalline films, nanodiamond powders and heterostructures with other advanced materials are encouraged topics for technical and review articles. In addition to diamond, the journal publishes manuscripts on the synthesis, characterization and application of other related materials including diamond-like carbons, carbon nanotubes, graphene, and boron and carbon nitrides. Articles are sought on the chemical functionalization of diamond and related materials as well as their use in electrochemistry, energy storage and conversion, chemical and biological sensing, imaging, thermal management, photonic and quantum applications, electron emission and electronic devices. The International Conference on Diamond and Carbon Materials has evolved into the largest and most well attended forum in the field of diamond, providing a forum to showcase the latest results in the science and technology of diamond and other carbon materials such as carbon nanotubes, graphene, and diamond-like carbon. Run annually in association with Diamond and Related Materials the conference provides junior and established researchers the opportunity to exchange the latest results ranging from fundamental physical and chemical concepts to applied research focusing on the next generation carbon-based devices.
期刊最新文献
Editorial Board Outside Front Cover - Journal name, Cover image, Volume issue details, ISSN, Cover Date, Elsevier Logo and Society Logo if required Synthesis and characterizations of nanohybrids based on amino silane-graphene oxide decorated by zirconium oxide nanoparticles Unveiling Bi-decorated graphitic carbon nitride nanostructures for electrochemical sensors Graphene modulator and 2-bit encoder based on plasma induced transparency effect
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1