Aya K. Gomaa, Maram G. Zonkol, Ghada E. Khedr and Nageh K. Allam
{"title":"阳离子分布:过渡金属尖晶石上氢气进化电催化的描述符","authors":"Aya K. Gomaa, Maram G. Zonkol, Ghada E. Khedr and Nageh K. Allam","doi":"10.1039/D4EY00121D","DOIUrl":null,"url":null,"abstract":"<p >Exploring cost-effective and efficient electrocatalysts for the hydrogen evolution reaction (HER) is essential for realizing green energy technologies such as water electrolyzers and fuel cells. To this end, identifying descriptors that determine the activity of the employed catalysts would render the process more efficient and help to design selective catalytic materials. Herein, cation distribution (<em>δ</em>) is presented as the activity descriptor for the HER on CoFe<small><sub>2</sub></small>O<small><sub>4</sub></small> spinels. A one-step hydrothermal synthesis method is demonstrated for the fabrication of flower-shaped spinel CoFe<small><sub>2</sub></small>O<small><sub>4</sub></small> nanosheets on Ni foam at various pH values with different cation distributions. XPS and Raman analyses revealed the cation distribution of Co and Fe as the main factor determining the catalytic activity of the material. This has been confirmed both experimentally and computationally. The catalyst with the largest <em>δ</em> (0.33) showed as low as 66 mV overpotential at −10 mA cm<small><sup>−2</sup></small> with exceptional stability for 44 hours of continuous electrolysis in 1 M KOH. Our study demonstrates cation distribution in spinels as a descriptor of their HER catalytic activity.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d4ey00121d?page=search","citationCount":"0","resultStr":"{\"title\":\"Cation distribution: a descriptor for hydrogen evolution electrocatalysis on transition-metal spinels†\",\"authors\":\"Aya K. Gomaa, Maram G. Zonkol, Ghada E. Khedr and Nageh K. Allam\",\"doi\":\"10.1039/D4EY00121D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Exploring cost-effective and efficient electrocatalysts for the hydrogen evolution reaction (HER) is essential for realizing green energy technologies such as water electrolyzers and fuel cells. To this end, identifying descriptors that determine the activity of the employed catalysts would render the process more efficient and help to design selective catalytic materials. Herein, cation distribution (<em>δ</em>) is presented as the activity descriptor for the HER on CoFe<small><sub>2</sub></small>O<small><sub>4</sub></small> spinels. A one-step hydrothermal synthesis method is demonstrated for the fabrication of flower-shaped spinel CoFe<small><sub>2</sub></small>O<small><sub>4</sub></small> nanosheets on Ni foam at various pH values with different cation distributions. XPS and Raman analyses revealed the cation distribution of Co and Fe as the main factor determining the catalytic activity of the material. This has been confirmed both experimentally and computationally. The catalyst with the largest <em>δ</em> (0.33) showed as low as 66 mV overpotential at −10 mA cm<small><sup>−2</sup></small> with exceptional stability for 44 hours of continuous electrolysis in 1 M KOH. Our study demonstrates cation distribution in spinels as a descriptor of their HER catalytic activity.</p>\",\"PeriodicalId\":72877,\"journal\":{\"name\":\"EES catalysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d4ey00121d?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EES catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ey/d4ey00121d\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EES catalysis","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ey/d4ey00121d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
为氢进化反应(HER)探索具有成本效益的高效电催化剂对于实现水电解槽和燃料电池等绿色能源技术至关重要。为此,确定决定所使用催化剂活性的描述符将提高催化过程的效率,并有助于设计选择性催化材料。本文将阳离子分布(δ)作为 CoFe2O4 尖晶石 HER 的活性描述因子。在不同的 pH 值和不同的阳离子分布条件下,一步水热合成法在泡沫镍上制备了花形尖晶石 CoFe2O4 纳米片。XPS 和拉曼分析表明,Co 和 Fe 的阳离子分布是决定材料催化活性的主要因素。实验和计算都证实了这一点。δ值最大(0.33)的催化剂在-10 mA cm-2条件下显示出低至66 mV的过电位,在1 M KOH中连续电解44小时仍异常稳定。我们的研究表明,阳离子分布是尖晶石 HER 催化活性的描述指标。
Cation distribution: a descriptor for hydrogen evolution electrocatalysis on transition-metal spinels†
Exploring cost-effective and efficient electrocatalysts for the hydrogen evolution reaction (HER) is essential for realizing green energy technologies such as water electrolyzers and fuel cells. To this end, identifying descriptors that determine the activity of the employed catalysts would render the process more efficient and help to design selective catalytic materials. Herein, cation distribution (δ) is presented as the activity descriptor for the HER on CoFe2O4 spinels. A one-step hydrothermal synthesis method is demonstrated for the fabrication of flower-shaped spinel CoFe2O4 nanosheets on Ni foam at various pH values with different cation distributions. XPS and Raman analyses revealed the cation distribution of Co and Fe as the main factor determining the catalytic activity of the material. This has been confirmed both experimentally and computationally. The catalyst with the largest δ (0.33) showed as low as 66 mV overpotential at −10 mA cm−2 with exceptional stability for 44 hours of continuous electrolysis in 1 M KOH. Our study demonstrates cation distribution in spinels as a descriptor of their HER catalytic activity.