景观模式对多用途牧场系统中山猫(Lynx rufus)资源选择的影响规模

IF 4 2区 环境科学与生态学 Q1 ECOLOGY Landscape Ecology Pub Date : 2024-08-05 DOI:10.1007/s10980-024-01944-7
Aidan B. Branney, Amanda M. Veals Dutt, Zachary M. Wardle, Evan P. Tanner, Michael E. Tewes, Michael J. Cherry
{"title":"景观模式对多用途牧场系统中山猫(Lynx rufus)资源选择的影响规模","authors":"Aidan B. Branney, Amanda M. Veals Dutt, Zachary M. Wardle, Evan P. Tanner, Michael E. Tewes, Michael J. Cherry","doi":"10.1007/s10980-024-01944-7","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Context</h3><p>There is a growing appreciation that wildlife behavioral responses to environmental conditions are scale-dependent and that identifying the scale where the effect of an environmental variable on a behavior is the strongest (i.e., scale of effect) can reveal how animals perceive and respond to their environment. In South Texas, brush management often optimizes agricultural and wildlife management objectives through the precise interspersion of vegetation types creating novel environments which likely affect animal behavior at multiple scales. There is a lack of understanding of how and at what scales this management regime and associated landscape patterns influence wildlife.</p><h3 data-test=\"abstract-sub-heading\">Objectives</h3><p>Our objective was to examine the scale at which landscape patterns had the strongest effect on wildlife behavior. Bobcats (<i>Lynx rufus</i>) our model species, are one of the largest obligated carnivores in the system, and have strong associations with vegetation structure and prey density, two aspects likely to influenced by landscape patterns. We conducted a multiscale resource selection analysis to identify the characteristic scale where landscape patterns had the strongest effect on resource selection.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>We examined resource selection within the home range for 9 bobcats monitored from 2021 to 2022 by fitting resource selection functions which included variables representing landcover, water, energy infrastructure, and landscape metrics (edge density, patch density, and contagion). We fit models using landscape metrics calculated at 10 different scales and compared model performance to identify the scale of effect of landscape metrics on resource selection.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>The scale of effect of landscape metrics occurred at finer scales. The characteristic scale for edge density and patch density was 30 m (the finest scale examined), and the characteristic scale for contagion occurred at 100 m. Bobcats avoided locations with high woody patch density and selected for greater woody edge density and contagion. Bobcats selected areas closer to woody vegetation and water bodies while avoiding herbaceous cover and energy development infrastructure.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>A key step in understanding the effect of human development and associated landscape patterns on animal behavior is the identifying the scale of effect. We found support for our hypothesis that resource selection would be most strongly affected by landscape configuration at finer scales. Our study demonstrates the importance of cross-scale comparisons when examining the effects of landscape attributes on animal behavior.</p>","PeriodicalId":54745,"journal":{"name":"Landscape Ecology","volume":"28 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scale of effect of landscape patterns on resource selection by bobcats (Lynx rufus) in a multi-use rangeland system\",\"authors\":\"Aidan B. Branney, Amanda M. Veals Dutt, Zachary M. Wardle, Evan P. Tanner, Michael E. Tewes, Michael J. Cherry\",\"doi\":\"10.1007/s10980-024-01944-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Context</h3><p>There is a growing appreciation that wildlife behavioral responses to environmental conditions are scale-dependent and that identifying the scale where the effect of an environmental variable on a behavior is the strongest (i.e., scale of effect) can reveal how animals perceive and respond to their environment. In South Texas, brush management often optimizes agricultural and wildlife management objectives through the precise interspersion of vegetation types creating novel environments which likely affect animal behavior at multiple scales. There is a lack of understanding of how and at what scales this management regime and associated landscape patterns influence wildlife.</p><h3 data-test=\\\"abstract-sub-heading\\\">Objectives</h3><p>Our objective was to examine the scale at which landscape patterns had the strongest effect on wildlife behavior. Bobcats (<i>Lynx rufus</i>) our model species, are one of the largest obligated carnivores in the system, and have strong associations with vegetation structure and prey density, two aspects likely to influenced by landscape patterns. We conducted a multiscale resource selection analysis to identify the characteristic scale where landscape patterns had the strongest effect on resource selection.</p><h3 data-test=\\\"abstract-sub-heading\\\">Methods</h3><p>We examined resource selection within the home range for 9 bobcats monitored from 2021 to 2022 by fitting resource selection functions which included variables representing landcover, water, energy infrastructure, and landscape metrics (edge density, patch density, and contagion). We fit models using landscape metrics calculated at 10 different scales and compared model performance to identify the scale of effect of landscape metrics on resource selection.</p><h3 data-test=\\\"abstract-sub-heading\\\">Results</h3><p>The scale of effect of landscape metrics occurred at finer scales. The characteristic scale for edge density and patch density was 30 m (the finest scale examined), and the characteristic scale for contagion occurred at 100 m. Bobcats avoided locations with high woody patch density and selected for greater woody edge density and contagion. Bobcats selected areas closer to woody vegetation and water bodies while avoiding herbaceous cover and energy development infrastructure.</p><h3 data-test=\\\"abstract-sub-heading\\\">Conclusions</h3><p>A key step in understanding the effect of human development and associated landscape patterns on animal behavior is the identifying the scale of effect. We found support for our hypothesis that resource selection would be most strongly affected by landscape configuration at finer scales. Our study demonstrates the importance of cross-scale comparisons when examining the effects of landscape attributes on animal behavior.</p>\",\"PeriodicalId\":54745,\"journal\":{\"name\":\"Landscape Ecology\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Landscape Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10980-024-01944-7\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Landscape Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10980-024-01944-7","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景人们越来越认识到,野生动物对环境条件的行为反应是规模依赖性的,确定环境变量对行为影响最大的规模(即影响规模)可以揭示动物是如何感知和应对环境的。在得克萨斯州南部,灌木丛管理通常通过植被类型的精确交错来优化农业和野生动物管理目标,从而创造出可能在多个尺度上影响动物行为的新环境。我们的目标是研究景观模式对野生动物行为影响最大的尺度。山猫(Lynx rufus)是我们的模型物种,是该系统中最大的义务食肉动物之一,与植被结构和猎物密度有密切联系,而这两方面很可能受到景观模式的影响。我们对 2021 年至 2022 年监测到的 9 只山猫的家园范围内的资源选择进行了研究,方法是拟合资源选择函数,其中包括代表土地覆盖物、水、能源基础设施和景观指标(边缘密度、斑块密度和传染性)的变量。我们使用按 10 种不同尺度计算的景观指标拟合模型,并比较模型性能,以确定景观指标对资源选择的影响尺度。山猫会避开木质斑块密度高的地点,并选择木质边缘密度和传染性更高的地点。山猫选择了更靠近木本植被和水体的区域,同时避开草本植被和能源开发基础设施。我们发现,在较细的尺度上,资源选择受景观配置的影响最大,这一假设得到了支持。我们的研究表明,在研究景观属性对动物行为的影响时,进行跨尺度比较非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scale of effect of landscape patterns on resource selection by bobcats (Lynx rufus) in a multi-use rangeland system

Context

There is a growing appreciation that wildlife behavioral responses to environmental conditions are scale-dependent and that identifying the scale where the effect of an environmental variable on a behavior is the strongest (i.e., scale of effect) can reveal how animals perceive and respond to their environment. In South Texas, brush management often optimizes agricultural and wildlife management objectives through the precise interspersion of vegetation types creating novel environments which likely affect animal behavior at multiple scales. There is a lack of understanding of how and at what scales this management regime and associated landscape patterns influence wildlife.

Objectives

Our objective was to examine the scale at which landscape patterns had the strongest effect on wildlife behavior. Bobcats (Lynx rufus) our model species, are one of the largest obligated carnivores in the system, and have strong associations with vegetation structure and prey density, two aspects likely to influenced by landscape patterns. We conducted a multiscale resource selection analysis to identify the characteristic scale where landscape patterns had the strongest effect on resource selection.

Methods

We examined resource selection within the home range for 9 bobcats monitored from 2021 to 2022 by fitting resource selection functions which included variables representing landcover, water, energy infrastructure, and landscape metrics (edge density, patch density, and contagion). We fit models using landscape metrics calculated at 10 different scales and compared model performance to identify the scale of effect of landscape metrics on resource selection.

Results

The scale of effect of landscape metrics occurred at finer scales. The characteristic scale for edge density and patch density was 30 m (the finest scale examined), and the characteristic scale for contagion occurred at 100 m. Bobcats avoided locations with high woody patch density and selected for greater woody edge density and contagion. Bobcats selected areas closer to woody vegetation and water bodies while avoiding herbaceous cover and energy development infrastructure.

Conclusions

A key step in understanding the effect of human development and associated landscape patterns on animal behavior is the identifying the scale of effect. We found support for our hypothesis that resource selection would be most strongly affected by landscape configuration at finer scales. Our study demonstrates the importance of cross-scale comparisons when examining the effects of landscape attributes on animal behavior.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Landscape Ecology
Landscape Ecology 环境科学-地球科学综合
CiteScore
8.30
自引率
7.70%
发文量
164
审稿时长
8-16 weeks
期刊介绍: Landscape Ecology is the flagship journal of a well-established and rapidly developing interdisciplinary science that focuses explicitly on the ecological understanding of spatial heterogeneity. Landscape Ecology draws together expertise from both biophysical and socioeconomic sciences to explore basic and applied research questions concerning the ecology, conservation, management, design/planning, and sustainability of landscapes as coupled human-environment systems. Landscape ecology studies are characterized by spatially explicit methods in which spatial attributes and arrangements of landscape elements are directly analyzed and related to ecological processes.
期刊最新文献
Impact of tree growth form on temporal and spatial patterns of particulate matter with various particle sizes in urban street canyons. Nineteenth-century land use shapes the current occurrence of some plant species, but weakly affects the richness and total composition of Central European grasslands. Timber harvesting was the most important factor driving changes in vegetation composition, as compared to climate and fire regime shifts, in the mixedwood temperate forests of Temiscamingue since AD 1830. Landscapes-a lens for assessing sustainability. Microclimate temperature effects propagate across scales in forest ecosystems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1