Mrinal Jyoti Mahanta , Abhinav Gupta , Saran Srikanth Bodda , SungGook Cho , Gihwan So
{"title":"管道 T 型接头连接的循环行为特征","authors":"Mrinal Jyoti Mahanta , Abhinav Gupta , Saran Srikanth Bodda , SungGook Cho , Gihwan So","doi":"10.1016/j.ijpvp.2024.105284","DOIUrl":null,"url":null,"abstract":"<div><p>Failures in piping systems during earthquakes have resulted in operational disruptions and financial losses for critical facilities, such as nuclear power plants and hospital infrastructure. Past earthquake events have shown that failures in piping systems occur primarily at discontinuities, such as T-joints, elbows, and nozzles. Therefore, it is important to understand the behavior of piping joints under cyclic loading to mitigate the impact of such failures. This manuscript investigates the behavior of piping T-joints under cyclic loading. The behavior of these joints under cyclic loading is greatly influenced by the material properties of the piping components. Any variation in material properties can alter the responses of the piping joints, eventually affecting the seismic fragility of the piping system. This manuscript uses data from laboratory experiments to characterize and quantify uncertainties in material properties that influence the seismic fragility of piping systems. Additionally, this manuscript uses the data from laboratory experiments to validate a new limit state for characterizing the failure of piping joints under cyclic loading. In addition, it explores the effects of uncertainties in material properties on the performance function used to characterize the new limit state for failures at T-joint connections. In summary, this study provides insights into the influence of uncertainty in material properties on the seismic fragility of a piping system with an intent to improve the resiliency of piping systems in critical infrastructure facilities.</p></div>","PeriodicalId":54946,"journal":{"name":"International Journal of Pressure Vessels and Piping","volume":"211 ","pages":"Article 105284"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizing the cyclic behavior of piping T-joint connections\",\"authors\":\"Mrinal Jyoti Mahanta , Abhinav Gupta , Saran Srikanth Bodda , SungGook Cho , Gihwan So\",\"doi\":\"10.1016/j.ijpvp.2024.105284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Failures in piping systems during earthquakes have resulted in operational disruptions and financial losses for critical facilities, such as nuclear power plants and hospital infrastructure. Past earthquake events have shown that failures in piping systems occur primarily at discontinuities, such as T-joints, elbows, and nozzles. Therefore, it is important to understand the behavior of piping joints under cyclic loading to mitigate the impact of such failures. This manuscript investigates the behavior of piping T-joints under cyclic loading. The behavior of these joints under cyclic loading is greatly influenced by the material properties of the piping components. Any variation in material properties can alter the responses of the piping joints, eventually affecting the seismic fragility of the piping system. This manuscript uses data from laboratory experiments to characterize and quantify uncertainties in material properties that influence the seismic fragility of piping systems. Additionally, this manuscript uses the data from laboratory experiments to validate a new limit state for characterizing the failure of piping joints under cyclic loading. In addition, it explores the effects of uncertainties in material properties on the performance function used to characterize the new limit state for failures at T-joint connections. In summary, this study provides insights into the influence of uncertainty in material properties on the seismic fragility of a piping system with an intent to improve the resiliency of piping systems in critical infrastructure facilities.</p></div>\",\"PeriodicalId\":54946,\"journal\":{\"name\":\"International Journal of Pressure Vessels and Piping\",\"volume\":\"211 \",\"pages\":\"Article 105284\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Pressure Vessels and Piping\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0308016124001613\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pressure Vessels and Piping","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308016124001613","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
摘要
地震期间管道系统的故障已导致核电站和医院基础设施等关键设施的运行中断和经济损失。以往的地震事件表明,管道系统的故障主要发生在 T 型接头、弯头和喷嘴等不连续部位。因此,了解管道接头在循环载荷下的行为对减轻此类故障的影响非常重要。本手稿研究了管道 T 型接头在循环载荷下的行为。这些接头在循环载荷下的行为在很大程度上受到管道组件材料特性的影响。材料特性的任何变化都会改变管道接头的响应,最终影响管道系统的抗震脆性。本手稿利用实验室实验数据来描述和量化影响管道系统地震脆性的材料特性的不确定性。此外,本手稿还利用实验室实验数据验证了一种新的极限状态,用于描述管道接头在循环荷载作用下的失效情况。此外,它还探讨了材料特性的不确定性对性能函数的影响,该函数用于描述 T 型接头连接处失效的新极限状态。总之,本研究深入探讨了材料特性的不确定性对管道系统抗震脆性的影响,旨在提高关键基础设施中管道系统的抗震能力。
Characterizing the cyclic behavior of piping T-joint connections
Failures in piping systems during earthquakes have resulted in operational disruptions and financial losses for critical facilities, such as nuclear power plants and hospital infrastructure. Past earthquake events have shown that failures in piping systems occur primarily at discontinuities, such as T-joints, elbows, and nozzles. Therefore, it is important to understand the behavior of piping joints under cyclic loading to mitigate the impact of such failures. This manuscript investigates the behavior of piping T-joints under cyclic loading. The behavior of these joints under cyclic loading is greatly influenced by the material properties of the piping components. Any variation in material properties can alter the responses of the piping joints, eventually affecting the seismic fragility of the piping system. This manuscript uses data from laboratory experiments to characterize and quantify uncertainties in material properties that influence the seismic fragility of piping systems. Additionally, this manuscript uses the data from laboratory experiments to validate a new limit state for characterizing the failure of piping joints under cyclic loading. In addition, it explores the effects of uncertainties in material properties on the performance function used to characterize the new limit state for failures at T-joint connections. In summary, this study provides insights into the influence of uncertainty in material properties on the seismic fragility of a piping system with an intent to improve the resiliency of piping systems in critical infrastructure facilities.
期刊介绍:
Pressure vessel engineering technology is of importance in many branches of industry. This journal publishes the latest research results and related information on all its associated aspects, with particular emphasis on the structural integrity assessment, maintenance and life extension of pressurised process engineering plants.
The anticipated coverage of the International Journal of Pressure Vessels and Piping ranges from simple mass-produced pressure vessels to large custom-built vessels and tanks. Pressure vessels technology is a developing field, and contributions on the following topics will therefore be welcome:
• Pressure vessel engineering
• Structural integrity assessment
• Design methods
• Codes and standards
• Fabrication and welding
• Materials properties requirements
• Inspection and quality management
• Maintenance and life extension
• Ageing and environmental effects
• Life management
Of particular importance are papers covering aspects of significant practical application which could lead to major improvements in economy, reliability and useful life. While most accepted papers represent the results of original applied research, critical reviews of topical interest by world-leading experts will also appear from time to time.
International Journal of Pressure Vessels and Piping is indispensable reading for engineering professionals involved in the energy, petrochemicals, process plant, transport, aerospace and related industries; for manufacturers of pressure vessels and ancillary equipment; and for academics pursuing research in these areas.