Yang Zhang, Yang Shen, Xiaoyang Chen, Shunping Sun, Mengqi Cong, Yanlei Li
{"title":"新型 Al0.5CrFeMnCo2 高熵合金的显微结构和力学性能","authors":"Yang Zhang, Yang Shen, Xiaoyang Chen, Shunping Sun, Mengqi Cong, Yanlei Li","doi":"10.1007/s12666-024-03438-1","DOIUrl":null,"url":null,"abstract":"<p>In this study, a new Al<sub>0.5</sub>CrFeMnCo<sub>2</sub> (molar ratio) high entropy alloy was designed. The microstructure and mechanical properties of as-cast and annealed Al<sub>0.5</sub>CrFeMnCo<sub>2</sub> high entropy alloy were investigated. FCC+BCC duplex-phase structure is formed in as-cast Al<sub>0.5</sub>CrFeMnCo<sub>2</sub> high entropy alloy. Dendritic FCC phase is the predominant constituent phase, and BCC/B2 coherent structure is formed in the inter-dendritic BCC phase. A large number of short-rod small-sized BCC phases are precipitated within FCC dendrites after annealing at 1000 °C for 6 h but unobserved after annealing at 1100 °C and 1200 °C for 6 h. The as-cast Al<sub>0.5</sub>CrFeMnCo<sub>2</sub> high entropy alloy exhibits favorable comprehensive mechanical properties, with a compressive fracture strength of 1493 MPa and a plastic strain of 28.3%. After annealing at 1000 °C for 6 h, the compressive fracture strength and plastic strain reached are improved to 1676 MPa and 32.6%, respectively. However, further increase in annealing temperature results in gradual decrease in mechanical properties.</p>","PeriodicalId":23224,"journal":{"name":"Transactions of The Indian Institute of Metals","volume":"39 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructure and Mechanical Properties of a New Al0.5CrFeMnCo2 High Entropy Alloy\",\"authors\":\"Yang Zhang, Yang Shen, Xiaoyang Chen, Shunping Sun, Mengqi Cong, Yanlei Li\",\"doi\":\"10.1007/s12666-024-03438-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, a new Al<sub>0.5</sub>CrFeMnCo<sub>2</sub> (molar ratio) high entropy alloy was designed. The microstructure and mechanical properties of as-cast and annealed Al<sub>0.5</sub>CrFeMnCo<sub>2</sub> high entropy alloy were investigated. FCC+BCC duplex-phase structure is formed in as-cast Al<sub>0.5</sub>CrFeMnCo<sub>2</sub> high entropy alloy. Dendritic FCC phase is the predominant constituent phase, and BCC/B2 coherent structure is formed in the inter-dendritic BCC phase. A large number of short-rod small-sized BCC phases are precipitated within FCC dendrites after annealing at 1000 °C for 6 h but unobserved after annealing at 1100 °C and 1200 °C for 6 h. The as-cast Al<sub>0.5</sub>CrFeMnCo<sub>2</sub> high entropy alloy exhibits favorable comprehensive mechanical properties, with a compressive fracture strength of 1493 MPa and a plastic strain of 28.3%. After annealing at 1000 °C for 6 h, the compressive fracture strength and plastic strain reached are improved to 1676 MPa and 32.6%, respectively. However, further increase in annealing temperature results in gradual decrease in mechanical properties.</p>\",\"PeriodicalId\":23224,\"journal\":{\"name\":\"Transactions of The Indian Institute of Metals\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of The Indian Institute of Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s12666-024-03438-1\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of The Indian Institute of Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12666-024-03438-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
Microstructure and Mechanical Properties of a New Al0.5CrFeMnCo2 High Entropy Alloy
In this study, a new Al0.5CrFeMnCo2 (molar ratio) high entropy alloy was designed. The microstructure and mechanical properties of as-cast and annealed Al0.5CrFeMnCo2 high entropy alloy were investigated. FCC+BCC duplex-phase structure is formed in as-cast Al0.5CrFeMnCo2 high entropy alloy. Dendritic FCC phase is the predominant constituent phase, and BCC/B2 coherent structure is formed in the inter-dendritic BCC phase. A large number of short-rod small-sized BCC phases are precipitated within FCC dendrites after annealing at 1000 °C for 6 h but unobserved after annealing at 1100 °C and 1200 °C for 6 h. The as-cast Al0.5CrFeMnCo2 high entropy alloy exhibits favorable comprehensive mechanical properties, with a compressive fracture strength of 1493 MPa and a plastic strain of 28.3%. After annealing at 1000 °C for 6 h, the compressive fracture strength and plastic strain reached are improved to 1676 MPa and 32.6%, respectively. However, further increase in annealing temperature results in gradual decrease in mechanical properties.
期刊介绍:
Transactions of the Indian Institute of Metals publishes original research articles and reviews on ferrous and non-ferrous process metallurgy, structural and functional materials development, physical, chemical and mechanical metallurgy, welding science and technology, metal forming, particulate technologies, surface engineering, characterization of materials, thermodynamics and kinetics, materials modelling and other allied branches of Metallurgy and Materials Engineering.
Transactions of the Indian Institute of Metals also serves as a forum for rapid publication of recent advances in all the branches of Metallurgy and Materials Engineering. The technical content of the journal is scrutinized by the Editorial Board composed of experts from various disciplines of Metallurgy and Materials Engineering. Editorial Advisory Board provides valuable advice on technical matters related to the publication of Transactions.