基于机器学习的 Low 和 Lou 非线性无力场平衡数值解法

IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Solar Physics Pub Date : 2024-08-09 DOI:10.1007/s11207-024-02352-5
Yao Zhang, Long Xu, Yihua Yan
{"title":"基于机器学习的 Low 和 Lou 非线性无力场平衡数值解法","authors":"Yao Zhang,&nbsp;Long Xu,&nbsp;Yihua Yan","doi":"10.1007/s11207-024-02352-5","DOIUrl":null,"url":null,"abstract":"<div><p>Low and Lou (<i>Astrophys. J.</i> <b>352</b>, 343, 1990) presented a family of nonlinear force-free magnetic fields that have established themselves as the gold standard for extrapolating force-free magnetic fields in solar physics. Building upon this important work, our study introduces a novel grid-free machine-learning-based method to effectively solve the equilibria proposed by Low and Lou. Through extensive numerical experiments, our results unequivocally demonstrate the efficient capability of the machine-learning algorithm in deriving numerical solutions for Low and Lou’s equilibria. Furthermore, we explore the opportunities and challenges of applying artificial-intelligence technology to real observed solar active regions.</p></div>","PeriodicalId":777,"journal":{"name":"Solar Physics","volume":"299 8","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine-Learning-Based Numerical Solution for Low and Lou’s Nonlinear Force-Free Field Equilibria\",\"authors\":\"Yao Zhang,&nbsp;Long Xu,&nbsp;Yihua Yan\",\"doi\":\"10.1007/s11207-024-02352-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Low and Lou (<i>Astrophys. J.</i> <b>352</b>, 343, 1990) presented a family of nonlinear force-free magnetic fields that have established themselves as the gold standard for extrapolating force-free magnetic fields in solar physics. Building upon this important work, our study introduces a novel grid-free machine-learning-based method to effectively solve the equilibria proposed by Low and Lou. Through extensive numerical experiments, our results unequivocally demonstrate the efficient capability of the machine-learning algorithm in deriving numerical solutions for Low and Lou’s equilibria. Furthermore, we explore the opportunities and challenges of applying artificial-intelligence technology to real observed solar active regions.</p></div>\",\"PeriodicalId\":777,\"journal\":{\"name\":\"Solar Physics\",\"volume\":\"299 8\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11207-024-02352-5\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11207-024-02352-5","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

Low和Lou(《天体物理学杂志》352,343,1990年)提出了非线性无力磁场系列,该系列已成为太阳物理学中推断无力磁场的黄金标准。在这项重要工作的基础上,我们的研究引入了一种新颖的基于无网格机器学习的方法,以有效求解 Low 和 Lou 提出的平衡。通过大量的数值实验,我们的研究结果清楚地证明了机器学习算法在推导 Low 和 Lou 平衡的数值解方面的高效能力。此外,我们还探讨了将人工智能技术应用于实际观测到的太阳活动区域的机遇和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine-Learning-Based Numerical Solution for Low and Lou’s Nonlinear Force-Free Field Equilibria

Low and Lou (Astrophys. J. 352, 343, 1990) presented a family of nonlinear force-free magnetic fields that have established themselves as the gold standard for extrapolating force-free magnetic fields in solar physics. Building upon this important work, our study introduces a novel grid-free machine-learning-based method to effectively solve the equilibria proposed by Low and Lou. Through extensive numerical experiments, our results unequivocally demonstrate the efficient capability of the machine-learning algorithm in deriving numerical solutions for Low and Lou’s equilibria. Furthermore, we explore the opportunities and challenges of applying artificial-intelligence technology to real observed solar active regions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Physics
Solar Physics 地学天文-天文与天体物理
CiteScore
5.10
自引率
17.90%
发文量
146
审稿时长
1 months
期刊介绍: Solar Physics was founded in 1967 and is the principal journal for the publication of the results of fundamental research on the Sun. The journal treats all aspects of solar physics, ranging from the internal structure of the Sun and its evolution to the outer corona and solar wind in interplanetary space. Papers on solar-terrestrial physics and on stellar research are also published when their results have a direct bearing on our understanding of the Sun.
期刊最新文献
Prediction of Geoeffective CMEs Using SOHO Images and Deep Learning A New Solar Hard X-ray Image Reconstruction Algorithm for ASO-S/HXI Based on Deep Learning Calibration and Performance of the Full-Disk Vector MagnetoGraph (FMG) on Board the Advanced Space-Based Solar Observatory (ASO-S) Evaluation of Sunspot Areas Derived by Automated Sunspot-Detection Methods Helioseismic Constraints: Past, Current, and Future Observations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1