几何代数与大型语言模型:三维、交互式和可控场景中基于指令的独立网格变换

Dimitris Angelis, Prodromos Kolyvakis, Manos Kamarianakis, George Papagiannakis
{"title":"几何代数与大型语言模型:三维、交互式和可控场景中基于指令的独立网格变换","authors":"Dimitris Angelis, Prodromos Kolyvakis, Manos Kamarianakis, George Papagiannakis","doi":"arxiv-2408.02275","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel integration of Large Language Models (LLMs)\nwith Conformal Geometric Algebra (CGA) to revolutionize controllable 3D scene\nediting, particularly for object repositioning tasks, which traditionally\nrequires intricate manual processes and specialized expertise. These\nconventional methods typically suffer from reliance on large training datasets\nor lack a formalized language for precise edits. Utilizing CGA as a robust\nformal language, our system, shenlong, precisely models spatial transformations\nnecessary for accurate object repositioning. Leveraging the zero-shot learning\ncapabilities of pre-trained LLMs, shenlong translates natural language\ninstructions into CGA operations which are then applied to the scene,\nfacilitating exact spatial transformations within 3D scenes without the need\nfor specialized pre-training. Implemented in a realistic simulation\nenvironment, shenlong ensures compatibility with existing graphics pipelines.\nTo accurately assess the impact of CGA, we benchmark against robust Euclidean\nSpace baselines, evaluating both latency and accuracy. Comparative performance\nevaluations indicate that shenlong significantly reduces LLM response times by\n16% and boosts success rates by 9.6% on average compared to the traditional\nmethods. Notably, shenlong achieves a 100% perfect success rate in common\npractical queries, a benchmark where other systems fall short. These\nadvancements underscore shenlong's potential to democratize 3D scene editing,\nenhancing accessibility and fostering innovation across sectors such as\neducation, digital entertainment, and virtual reality.","PeriodicalId":501174,"journal":{"name":"arXiv - CS - Graphics","volume":"100 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric Algebra Meets Large Language Models: Instruction-Based Transformations of Separate Meshes in 3D, Interactive and Controllable Scenes\",\"authors\":\"Dimitris Angelis, Prodromos Kolyvakis, Manos Kamarianakis, George Papagiannakis\",\"doi\":\"arxiv-2408.02275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a novel integration of Large Language Models (LLMs)\\nwith Conformal Geometric Algebra (CGA) to revolutionize controllable 3D scene\\nediting, particularly for object repositioning tasks, which traditionally\\nrequires intricate manual processes and specialized expertise. These\\nconventional methods typically suffer from reliance on large training datasets\\nor lack a formalized language for precise edits. Utilizing CGA as a robust\\nformal language, our system, shenlong, precisely models spatial transformations\\nnecessary for accurate object repositioning. Leveraging the zero-shot learning\\ncapabilities of pre-trained LLMs, shenlong translates natural language\\ninstructions into CGA operations which are then applied to the scene,\\nfacilitating exact spatial transformations within 3D scenes without the need\\nfor specialized pre-training. Implemented in a realistic simulation\\nenvironment, shenlong ensures compatibility with existing graphics pipelines.\\nTo accurately assess the impact of CGA, we benchmark against robust Euclidean\\nSpace baselines, evaluating both latency and accuracy. Comparative performance\\nevaluations indicate that shenlong significantly reduces LLM response times by\\n16% and boosts success rates by 9.6% on average compared to the traditional\\nmethods. Notably, shenlong achieves a 100% perfect success rate in common\\npractical queries, a benchmark where other systems fall short. These\\nadvancements underscore shenlong's potential to democratize 3D scene editing,\\nenhancing accessibility and fostering innovation across sectors such as\\neducation, digital entertainment, and virtual reality.\",\"PeriodicalId\":501174,\"journal\":{\"name\":\"arXiv - CS - Graphics\",\"volume\":\"100 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.02275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了大型语言模型(LLMs)与共形几何代数(CGA)的新型集成,以彻底改变可控三维场景编辑,尤其是物体重新定位任务,而传统的三维场景编辑需要复杂的手工流程和专业知识。这些传统方法通常依赖于大量的训练数据集,或缺乏用于精确编辑的正规化语言。我们的系统 "神龙 "利用 CGA 作为一种强大的形式化语言,对精确物体重新定位所需的空间变换进行精确建模。利用预先训练的 LLM 的零点学习能力,Shenlong 可将自然语言指令转化为 CGA 操作,然后将其应用到场景中,从而在三维场景中实现精确的空间转换,而无需进行专门的预先训练。为了准确评估 CGA 的影响,我们以稳健的欧几里得空间基线为基准,对延迟和准确性进行了评估。性能比较评估结果表明,与传统方法相比,神龙公司的 LLM 响应时间显著缩短了 16%,成功率平均提高了 9.6%。值得注意的是,神龙系统在常见的实际查询中达到了 100% 的完美成功率,而其他系统在这一基准上还存在不足。这些进步凸显了神龙公司在三维场景编辑民主化方面的潜力,提高了可访问性,促进了教育、数字娱乐和虚拟现实等领域的创新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Geometric Algebra Meets Large Language Models: Instruction-Based Transformations of Separate Meshes in 3D, Interactive and Controllable Scenes
This paper introduces a novel integration of Large Language Models (LLMs) with Conformal Geometric Algebra (CGA) to revolutionize controllable 3D scene editing, particularly for object repositioning tasks, which traditionally requires intricate manual processes and specialized expertise. These conventional methods typically suffer from reliance on large training datasets or lack a formalized language for precise edits. Utilizing CGA as a robust formal language, our system, shenlong, precisely models spatial transformations necessary for accurate object repositioning. Leveraging the zero-shot learning capabilities of pre-trained LLMs, shenlong translates natural language instructions into CGA operations which are then applied to the scene, facilitating exact spatial transformations within 3D scenes without the need for specialized pre-training. Implemented in a realistic simulation environment, shenlong ensures compatibility with existing graphics pipelines. To accurately assess the impact of CGA, we benchmark against robust Euclidean Space baselines, evaluating both latency and accuracy. Comparative performance evaluations indicate that shenlong significantly reduces LLM response times by 16% and boosts success rates by 9.6% on average compared to the traditional methods. Notably, shenlong achieves a 100% perfect success rate in common practical queries, a benchmark where other systems fall short. These advancements underscore shenlong's potential to democratize 3D scene editing, enhancing accessibility and fostering innovation across sectors such as education, digital entertainment, and virtual reality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GaussianHeads: End-to-End Learning of Drivable Gaussian Head Avatars from Coarse-to-fine Representations A Missing Data Imputation GAN for Character Sprite Generation Visualizing Temporal Topic Embeddings with a Compass Playground v3: Improving Text-to-Image Alignment with Deep-Fusion Large Language Models Phys3DGS: Physically-based 3D Gaussian Splatting for Inverse Rendering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1