一个物体价值 64x64 像素通过图像扩散生成 3D 物体

Xingguang Yan, Han-Hung Lee, Ziyu Wan, Angel X. Chang
{"title":"一个物体价值 64x64 像素通过图像扩散生成 3D 物体","authors":"Xingguang Yan, Han-Hung Lee, Ziyu Wan, Angel X. Chang","doi":"arxiv-2408.03178","DOIUrl":null,"url":null,"abstract":"We introduce a new approach for generating realistic 3D models with UV maps\nthrough a representation termed \"Object Images.\" This approach encapsulates\nsurface geometry, appearance, and patch structures within a 64x64 pixel image,\neffectively converting complex 3D shapes into a more manageable 2D format. By\ndoing so, we address the challenges of both geometric and semantic irregularity\ninherent in polygonal meshes. This method allows us to use image generation\nmodels, such as Diffusion Transformers, directly for 3D shape generation.\nEvaluated on the ABO dataset, our generated shapes with patch structures\nachieve point cloud FID comparable to recent 3D generative models, while\nnaturally supporting PBR material generation.","PeriodicalId":501174,"journal":{"name":"arXiv - CS - Graphics","volume":"77 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Object is Worth 64x64 Pixels: Generating 3D Object via Image Diffusion\",\"authors\":\"Xingguang Yan, Han-Hung Lee, Ziyu Wan, Angel X. Chang\",\"doi\":\"arxiv-2408.03178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a new approach for generating realistic 3D models with UV maps\\nthrough a representation termed \\\"Object Images.\\\" This approach encapsulates\\nsurface geometry, appearance, and patch structures within a 64x64 pixel image,\\neffectively converting complex 3D shapes into a more manageable 2D format. By\\ndoing so, we address the challenges of both geometric and semantic irregularity\\ninherent in polygonal meshes. This method allows us to use image generation\\nmodels, such as Diffusion Transformers, directly for 3D shape generation.\\nEvaluated on the ABO dataset, our generated shapes with patch structures\\nachieve point cloud FID comparable to recent 3D generative models, while\\nnaturally supporting PBR material generation.\",\"PeriodicalId\":501174,\"journal\":{\"name\":\"arXiv - CS - Graphics\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.03178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了一种通过 "对象图像 "表示法生成具有 UV 贴图的逼真 3D 模型的新方法。这种方法将表面几何形状、外观和补丁结构封装在 64x64 像素的图像中,有效地将复杂的三维形状转换为更易于管理的二维格式。通过这种方法,我们解决了多边形网格固有的几何和语义不规则性难题。通过在 ABO 数据集上进行评估,我们生成的带有补丁结构的形状的点云 FID 值与最新的三维生成模型相当,同时还支持 PBR 材质生成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Object is Worth 64x64 Pixels: Generating 3D Object via Image Diffusion
We introduce a new approach for generating realistic 3D models with UV maps through a representation termed "Object Images." This approach encapsulates surface geometry, appearance, and patch structures within a 64x64 pixel image, effectively converting complex 3D shapes into a more manageable 2D format. By doing so, we address the challenges of both geometric and semantic irregularity inherent in polygonal meshes. This method allows us to use image generation models, such as Diffusion Transformers, directly for 3D shape generation. Evaluated on the ABO dataset, our generated shapes with patch structures achieve point cloud FID comparable to recent 3D generative models, while naturally supporting PBR material generation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GaussianHeads: End-to-End Learning of Drivable Gaussian Head Avatars from Coarse-to-fine Representations A Missing Data Imputation GAN for Character Sprite Generation Visualizing Temporal Topic Embeddings with a Compass Playground v3: Improving Text-to-Image Alignment with Deep-Fusion Large Language Models Phys3DGS: Physically-based 3D Gaussian Splatting for Inverse Rendering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1