Jian-Zhou Pan, Chi-Hsin Yang, Long Wu, Xiao Huang, Sijie Qiu
{"title":"一种用于轻质型钢表面缺陷检测的改进型 YOLOX-s 算法","authors":"Jian-Zhou Pan, Chi-Hsin Yang, Long Wu, Xiao Huang, Sijie Qiu","doi":"10.1177/16878132241266456","DOIUrl":null,"url":null,"abstract":"This study introduces an improved lightweight section-steel surface detection (ILSSD) YOLOX-s algorithm model to enhance feature fusion performance in single-stage target detection networks, addressing the low accuracy in detecting defects on section-steel surfaces and limited computing resources at steel plants. The ILSSD YOLOX-s model is improved by introducing the deep-wise separable convolution (DSC) module to reduce parameter count, a dual parallel attention module for improved feature extraction efficiency, and a weighted feature fusion path using bi-directional feature pyramid network (BiFPN). Additionally, the CIoU loss function is employed for boundary frame regression to enhance prediction accuracy. Based on the NEU-DET dataset, experimental results demonstrate that the ILSSD YOLOX-s algorithm model achieves a 75.9% mean average precision with an IoU threshold of 0.5 (mAP@0.5), an improvement of 7.1 percentage points over the original YOLOX-s model, with a detection speed of 78.4 frames per second (FPS). Its practicality is validated through training and validating it with a lightweight section-steel surface defect dataset from an industrial steel plant, further confirming its viability for industrial defect detection applications.","PeriodicalId":7357,"journal":{"name":"Advances in Mechanical Engineering","volume":"22 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One improved YOLOX-s algorithm for lightweight section-steel surface defect detection\",\"authors\":\"Jian-Zhou Pan, Chi-Hsin Yang, Long Wu, Xiao Huang, Sijie Qiu\",\"doi\":\"10.1177/16878132241266456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study introduces an improved lightweight section-steel surface detection (ILSSD) YOLOX-s algorithm model to enhance feature fusion performance in single-stage target detection networks, addressing the low accuracy in detecting defects on section-steel surfaces and limited computing resources at steel plants. The ILSSD YOLOX-s model is improved by introducing the deep-wise separable convolution (DSC) module to reduce parameter count, a dual parallel attention module for improved feature extraction efficiency, and a weighted feature fusion path using bi-directional feature pyramid network (BiFPN). Additionally, the CIoU loss function is employed for boundary frame regression to enhance prediction accuracy. Based on the NEU-DET dataset, experimental results demonstrate that the ILSSD YOLOX-s algorithm model achieves a 75.9% mean average precision with an IoU threshold of 0.5 (mAP@0.5), an improvement of 7.1 percentage points over the original YOLOX-s model, with a detection speed of 78.4 frames per second (FPS). Its practicality is validated through training and validating it with a lightweight section-steel surface defect dataset from an industrial steel plant, further confirming its viability for industrial defect detection applications.\",\"PeriodicalId\":7357,\"journal\":{\"name\":\"Advances in Mechanical Engineering\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mechanical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/16878132241266456\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/16878132241266456","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
One improved YOLOX-s algorithm for lightweight section-steel surface defect detection
This study introduces an improved lightweight section-steel surface detection (ILSSD) YOLOX-s algorithm model to enhance feature fusion performance in single-stage target detection networks, addressing the low accuracy in detecting defects on section-steel surfaces and limited computing resources at steel plants. The ILSSD YOLOX-s model is improved by introducing the deep-wise separable convolution (DSC) module to reduce parameter count, a dual parallel attention module for improved feature extraction efficiency, and a weighted feature fusion path using bi-directional feature pyramid network (BiFPN). Additionally, the CIoU loss function is employed for boundary frame regression to enhance prediction accuracy. Based on the NEU-DET dataset, experimental results demonstrate that the ILSSD YOLOX-s algorithm model achieves a 75.9% mean average precision with an IoU threshold of 0.5 (mAP@0.5), an improvement of 7.1 percentage points over the original YOLOX-s model, with a detection speed of 78.4 frames per second (FPS). Its practicality is validated through training and validating it with a lightweight section-steel surface defect dataset from an industrial steel plant, further confirming its viability for industrial defect detection applications.
期刊介绍:
Advances in Mechanical Engineering (AIME) is a JCR Ranked, peer-reviewed, open access journal which publishes a wide range of original research and review articles. The journal Editorial Board welcomes manuscripts in both fundamental and applied research areas, and encourages submissions which contribute novel and innovative insights to the field of mechanical engineering