存在边界耗散的量子编码转换

Izabella Lovas, Utkarsh Agrawal, Sagar Vijay
{"title":"存在边界耗散的量子编码转换","authors":"Izabella Lovas, Utkarsh Agrawal, Sagar Vijay","doi":"10.1103/prxquantum.5.030327","DOIUrl":null,"url":null,"abstract":"We investigate phase transitions in the encoding of quantum information in a quantum many-body system due to the competing effects of unitary scrambling and boundary dissipation. Specifically, we study the fate of quantum information in a one-dimensional qudit chain, subject to local unitary quantum circuit evolution in the presence of depolarizing noise at the boundary. If the qudit chain initially contains a finite amount of locally accessible quantum information, unitary evolution in the presence of boundary dissipation allows this information to remain partially protected when the dissipation is sufficiently weak, and up to timescales growing linearly in the system size <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>L</mi></math>. In contrast, for strong enough dissipation, this information is completely lost to the dissipative environment. We analytically investigate this “quantum coding transition” by considering dynamics involving Haar-random, local unitary gates, and confirm our predictions in numerical simulations of Clifford quantum circuits. Scrambling the quantum information in the qudit chain with a unitary circuit of depth <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"script\">O</mi></mrow><mo stretchy=\"false\">(</mo><mi>log</mi><mo></mo><mi>L</mi><mo stretchy=\"false\">)</mo></math> before the onset of dissipation can perfectly protect the information until late times. The nature of the coding transition changes when the dynamics extend for times much longer than <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>L</mi></math>. We further show that at weak dissipation, it is possible to code at a finite rate, i.e., a fraction of the many-body Hilbert space of the qudit chain can be used to encode quantum information.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum Coding Transitions in the Presence of Boundary Dissipation\",\"authors\":\"Izabella Lovas, Utkarsh Agrawal, Sagar Vijay\",\"doi\":\"10.1103/prxquantum.5.030327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate phase transitions in the encoding of quantum information in a quantum many-body system due to the competing effects of unitary scrambling and boundary dissipation. Specifically, we study the fate of quantum information in a one-dimensional qudit chain, subject to local unitary quantum circuit evolution in the presence of depolarizing noise at the boundary. If the qudit chain initially contains a finite amount of locally accessible quantum information, unitary evolution in the presence of boundary dissipation allows this information to remain partially protected when the dissipation is sufficiently weak, and up to timescales growing linearly in the system size <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>L</mi></math>. In contrast, for strong enough dissipation, this information is completely lost to the dissipative environment. We analytically investigate this “quantum coding transition” by considering dynamics involving Haar-random, local unitary gates, and confirm our predictions in numerical simulations of Clifford quantum circuits. Scrambling the quantum information in the qudit chain with a unitary circuit of depth <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi mathvariant=\\\"script\\\">O</mi></mrow><mo stretchy=\\\"false\\\">(</mo><mi>log</mi><mo></mo><mi>L</mi><mo stretchy=\\\"false\\\">)</mo></math> before the onset of dissipation can perfectly protect the information until late times. The nature of the coding transition changes when the dynamics extend for times much longer than <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>L</mi></math>. We further show that at weak dissipation, it is possible to code at a finite rate, i.e., a fraction of the many-body Hilbert space of the qudit chain can be used to encode quantum information.\",\"PeriodicalId\":501296,\"journal\":{\"name\":\"PRX Quantum\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PRX Quantum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/prxquantum.5.030327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxquantum.5.030327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了量子多体系统中量子信息编码的相变,这种相变是由单元扰动和边界耗散的竞争效应引起的。具体来说,我们研究了量子信息在一维量子链中的命运,该量子链在边界存在去极化噪声的情况下受到局部单元量子回路演化的影响。如果量子链最初包含有限数量的局部可访问量子信息,那么当耗散足够弱时,存在边界耗散的单元演化允许这些信息保持部分保护,其时间尺度与系统大小 L 呈线性增长。通过考虑涉及哈尔随机、局部单元门的动力学,我们对这种 "量子编码转换 "进行了分析研究,并在克利福德量子电路的数值模拟中证实了我们的预测。在耗散开始之前,用深度为 O(logL)的单元电路扰乱量子链中的量子信息,可以完美地保护信息直到后期。我们进一步证明,在弱耗散情况下,有可能以有限速率进行编码,也就是说,魁拔链的多体希尔伯特空间的一部分可以用来编码量子信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantum Coding Transitions in the Presence of Boundary Dissipation
We investigate phase transitions in the encoding of quantum information in a quantum many-body system due to the competing effects of unitary scrambling and boundary dissipation. Specifically, we study the fate of quantum information in a one-dimensional qudit chain, subject to local unitary quantum circuit evolution in the presence of depolarizing noise at the boundary. If the qudit chain initially contains a finite amount of locally accessible quantum information, unitary evolution in the presence of boundary dissipation allows this information to remain partially protected when the dissipation is sufficiently weak, and up to timescales growing linearly in the system size L. In contrast, for strong enough dissipation, this information is completely lost to the dissipative environment. We analytically investigate this “quantum coding transition” by considering dynamics involving Haar-random, local unitary gates, and confirm our predictions in numerical simulations of Clifford quantum circuits. Scrambling the quantum information in the qudit chain with a unitary circuit of depth O(logL) before the onset of dissipation can perfectly protect the information until late times. The nature of the coding transition changes when the dynamics extend for times much longer than L. We further show that at weak dissipation, it is possible to code at a finite rate, i.e., a fraction of the many-body Hilbert space of the qudit chain can be used to encode quantum information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reducing Leakage of Single-Qubit Gates for Superconducting Quantum Processors Using Analytical Control Pulse Envelopes Quasiprobabilities in Quantum Thermodynamics and Many-Body Systems Improving Threshold for Fault-Tolerant Color-Code Quantum Computing by Flagged Weight Optimization Progress in Superconductor-Semiconductor Topological Josephson Junctions Mitigating Scattering in a Quantum System Using Only an Integrating Sphere
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1