Beate E. Asenbeck, Akito Kawasaki, Ambroise Boyer, Tom Darras, Alban Urvoy, Akira Furusawa, Julien Laurat
{"title":"减少量子互连线性光子钟态测量误差的混合方法","authors":"Beate E. Asenbeck, Akito Kawasaki, Ambroise Boyer, Tom Darras, Alban Urvoy, Akira Furusawa, Julien Laurat","doi":"10.1103/prxquantum.5.030331","DOIUrl":null,"url":null,"abstract":"Optical quantum information processing relies critically on Bell-state measurement, a ubiquitous operation for quantum communication and computing. Its practical realization involves the interference of optical modes and the detection of a single photon in an indistinguishable manner. Yet, in the absence of efficient photon-number-resolution capabilities, errors arise from multiphoton components, decreasing the overall process fidelity. Here, we introduce a hybrid detection scheme for Bell-state measurement, leveraging both on-off single-photon detection and quadrature conditioning via homodyne detection. We derive explicit fidelities for quantum teleportation and entanglement-swapping processes employing this strategy, demonstrating its efficacy. We also compare with photon-number-resolving detectors and find a strong advantage of the hybrid scheme in a wide range of parameters. This work provides a new tool for linear-optics schemes, with applications to quantum state engineering and quantum interconnects.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"290 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Approach to Mitigate Errors in Linear Photonic Bell-State Measurement for Quantum Interconnects\",\"authors\":\"Beate E. Asenbeck, Akito Kawasaki, Ambroise Boyer, Tom Darras, Alban Urvoy, Akira Furusawa, Julien Laurat\",\"doi\":\"10.1103/prxquantum.5.030331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optical quantum information processing relies critically on Bell-state measurement, a ubiquitous operation for quantum communication and computing. Its practical realization involves the interference of optical modes and the detection of a single photon in an indistinguishable manner. Yet, in the absence of efficient photon-number-resolution capabilities, errors arise from multiphoton components, decreasing the overall process fidelity. Here, we introduce a hybrid detection scheme for Bell-state measurement, leveraging both on-off single-photon detection and quadrature conditioning via homodyne detection. We derive explicit fidelities for quantum teleportation and entanglement-swapping processes employing this strategy, demonstrating its efficacy. We also compare with photon-number-resolving detectors and find a strong advantage of the hybrid scheme in a wide range of parameters. This work provides a new tool for linear-optics schemes, with applications to quantum state engineering and quantum interconnects.\",\"PeriodicalId\":501296,\"journal\":{\"name\":\"PRX Quantum\",\"volume\":\"290 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PRX Quantum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/prxquantum.5.030331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxquantum.5.030331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hybrid Approach to Mitigate Errors in Linear Photonic Bell-State Measurement for Quantum Interconnects
Optical quantum information processing relies critically on Bell-state measurement, a ubiquitous operation for quantum communication and computing. Its practical realization involves the interference of optical modes and the detection of a single photon in an indistinguishable manner. Yet, in the absence of efficient photon-number-resolution capabilities, errors arise from multiphoton components, decreasing the overall process fidelity. Here, we introduce a hybrid detection scheme for Bell-state measurement, leveraging both on-off single-photon detection and quadrature conditioning via homodyne detection. We derive explicit fidelities for quantum teleportation and entanglement-swapping processes employing this strategy, demonstrating its efficacy. We also compare with photon-number-resolving detectors and find a strong advantage of the hybrid scheme in a wide range of parameters. This work provides a new tool for linear-optics schemes, with applications to quantum state engineering and quantum interconnects.