Cameryn Sanders, Stacie Dobson, Alejandro G. Marangoni
{"title":"添加蛋白质对植物奶酪的影响","authors":"Cameryn Sanders, Stacie Dobson, Alejandro G. Marangoni","doi":"10.1557/s43577-024-00737-2","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Plant-based cheese alternatives often demonstrate poor melt, stretch, texture, and nutritional value. Dairy cheese has a complex structure of fats and caseins, which has proved challenging to replicate using plant ingredients. In this study, the functional characteristics of starch-structured plant-based cheeses were evaluated as a function of increasing protein contents up to 10% w/w, to determine if protein addition was beneficial to cheese functionality. Any addition of protein to the starch matrix increased melt, decreased oil loss, and increased hardness. Thermo-rheological and thermo-mechanical parameters of the cheeses were determined and correlated to the improved functionality. The relative decrease in the storage modulus (G′) from 40°C to 95°C was strongly correlated to the observed increase in melt. This study suggests that there is potential for the improvement in the functionality and performance of plant-based cheese alternatives by protein addition, while also enhancing their nutritional profile.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3><h3 data-test=\"abstract-sub-heading\">Impact Statement</h3><p>With changing environmental and sustainability demands, as well as dietary preferences, there is an opportunity to close the gap between dairy and plant-based cheeses. Based on the target cost, functionality, and nutritional value, the protein content of plant-based cheeses can be modified so that the functional, textural, and nutritional properties can meet consumer expectations. With an increased understanding of the broader textural properties of plant-based cheeses, we can better engineer the formulations for various food applications. Existing manufacturing equipment and processes can be used to improve sustainability, while the formulations can be altered to create a more desirable product. In this letter, we show that it should not be an expectation to settle for plant-based alternatives that underperform, as there is potential to greatly improve this sector.</p>","PeriodicalId":18828,"journal":{"name":"Mrs Bulletin","volume":"26 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of protein addition in plant-based cheese\",\"authors\":\"Cameryn Sanders, Stacie Dobson, Alejandro G. Marangoni\",\"doi\":\"10.1557/s43577-024-00737-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Plant-based cheese alternatives often demonstrate poor melt, stretch, texture, and nutritional value. Dairy cheese has a complex structure of fats and caseins, which has proved challenging to replicate using plant ingredients. In this study, the functional characteristics of starch-structured plant-based cheeses were evaluated as a function of increasing protein contents up to 10% w/w, to determine if protein addition was beneficial to cheese functionality. Any addition of protein to the starch matrix increased melt, decreased oil loss, and increased hardness. Thermo-rheological and thermo-mechanical parameters of the cheeses were determined and correlated to the improved functionality. The relative decrease in the storage modulus (G′) from 40°C to 95°C was strongly correlated to the observed increase in melt. This study suggests that there is potential for the improvement in the functionality and performance of plant-based cheese alternatives by protein addition, while also enhancing their nutritional profile.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3><h3 data-test=\\\"abstract-sub-heading\\\">Impact Statement</h3><p>With changing environmental and sustainability demands, as well as dietary preferences, there is an opportunity to close the gap between dairy and plant-based cheeses. Based on the target cost, functionality, and nutritional value, the protein content of plant-based cheeses can be modified so that the functional, textural, and nutritional properties can meet consumer expectations. With an increased understanding of the broader textural properties of plant-based cheeses, we can better engineer the formulations for various food applications. Existing manufacturing equipment and processes can be used to improve sustainability, while the formulations can be altered to create a more desirable product. In this letter, we show that it should not be an expectation to settle for plant-based alternatives that underperform, as there is potential to greatly improve this sector.</p>\",\"PeriodicalId\":18828,\"journal\":{\"name\":\"Mrs Bulletin\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mrs Bulletin\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1557/s43577-024-00737-2\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mrs Bulletin","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43577-024-00737-2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Influence of protein addition in plant-based cheese
Abstract
Plant-based cheese alternatives often demonstrate poor melt, stretch, texture, and nutritional value. Dairy cheese has a complex structure of fats and caseins, which has proved challenging to replicate using plant ingredients. In this study, the functional characteristics of starch-structured plant-based cheeses were evaluated as a function of increasing protein contents up to 10% w/w, to determine if protein addition was beneficial to cheese functionality. Any addition of protein to the starch matrix increased melt, decreased oil loss, and increased hardness. Thermo-rheological and thermo-mechanical parameters of the cheeses were determined and correlated to the improved functionality. The relative decrease in the storage modulus (G′) from 40°C to 95°C was strongly correlated to the observed increase in melt. This study suggests that there is potential for the improvement in the functionality and performance of plant-based cheese alternatives by protein addition, while also enhancing their nutritional profile.
Graphical abstract
Impact Statement
With changing environmental and sustainability demands, as well as dietary preferences, there is an opportunity to close the gap between dairy and plant-based cheeses. Based on the target cost, functionality, and nutritional value, the protein content of plant-based cheeses can be modified so that the functional, textural, and nutritional properties can meet consumer expectations. With an increased understanding of the broader textural properties of plant-based cheeses, we can better engineer the formulations for various food applications. Existing manufacturing equipment and processes can be used to improve sustainability, while the formulations can be altered to create a more desirable product. In this letter, we show that it should not be an expectation to settle for plant-based alternatives that underperform, as there is potential to greatly improve this sector.
期刊介绍:
MRS Bulletin is one of the most widely recognized and highly respected publications in advanced materials research. Each month, the Bulletin provides a comprehensive overview of a specific materials theme, along with industry and policy developments, and MRS and materials-community news and events. Written by leading experts, the overview articles are useful references for specialists, but are also presented at a level understandable to a broad scientific audience.