{"title":"基于原位聚合酒石酸的激光可重写室温磷光技术","authors":"Tuo-Yu Zhou, Tai-Wen Li, Hai-Fu Zhang, Rui-Lin Chai, Qian Zhao, Penglin Zhang, Guang-Yue Li, Qian-Wen Wang, Chang Li, Yu Shu, Zhi Fan, Sheng-Hua Li","doi":"10.1007/s11426-024-2109-5","DOIUrl":null,"url":null,"abstract":"<div><p>Organic room temperature phosphorescence (RTP) materials have potential applications in information technology and bioimaging. However, the precise control of the afterglow in reversible manners remains challenging for organic matters. Here, we report a kind of organic RTP material fabricated by simple heating mixtures of tartaric acid (TA) and aromatic acids, which can switch their phosphorescence by laser. Those mixtures show tunable phosphorescence from indigo to orange with phosphorescence efficiency of up to 53.99% due to locking different organic luminogens by the TA-formed matrix through the non-covalent interactions. The afterglow of those materials lasts a few seconds and disappears by water fumigation, which can be repeated in response to wet/heat stimuli. With drop-casting those materials on glass slides, a laser-repatternable phosphorescence is achieved by facile laser direct writing and quenched by water cyclically. Those results open the opportunity for the design of smart stimuli-responsive phosphorescence materials from sustainable natural products.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":772,"journal":{"name":"Science China Chemistry","volume":"67 9","pages":"3029 - 3038"},"PeriodicalIF":10.4000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laser-rewritable room temperature phosphorescence based on in-situ polymerized tartaric acid\",\"authors\":\"Tuo-Yu Zhou, Tai-Wen Li, Hai-Fu Zhang, Rui-Lin Chai, Qian Zhao, Penglin Zhang, Guang-Yue Li, Qian-Wen Wang, Chang Li, Yu Shu, Zhi Fan, Sheng-Hua Li\",\"doi\":\"10.1007/s11426-024-2109-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Organic room temperature phosphorescence (RTP) materials have potential applications in information technology and bioimaging. However, the precise control of the afterglow in reversible manners remains challenging for organic matters. Here, we report a kind of organic RTP material fabricated by simple heating mixtures of tartaric acid (TA) and aromatic acids, which can switch their phosphorescence by laser. Those mixtures show tunable phosphorescence from indigo to orange with phosphorescence efficiency of up to 53.99% due to locking different organic luminogens by the TA-formed matrix through the non-covalent interactions. The afterglow of those materials lasts a few seconds and disappears by water fumigation, which can be repeated in response to wet/heat stimuli. With drop-casting those materials on glass slides, a laser-repatternable phosphorescence is achieved by facile laser direct writing and quenched by water cyclically. Those results open the opportunity for the design of smart stimuli-responsive phosphorescence materials from sustainable natural products.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":772,\"journal\":{\"name\":\"Science China Chemistry\",\"volume\":\"67 9\",\"pages\":\"3029 - 3038\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11426-024-2109-5\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Chemistry","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s11426-024-2109-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
有机室温磷光(RTP)材料在信息技术和生物成像方面具有潜在的应用价值。然而,以可逆的方式精确控制余辉对于有机物来说仍然具有挑战性。在此,我们报告了一种通过简单加热酒石酸(TA)和芳香酸混合物而制成的有机 RTP 材料,这种材料可以通过激光切换其磷光。这些混合物显示出从靛蓝到橙色的可调磷光,磷光效率高达 53.99%,这是由于 TA 形成的基质通过非共价作用锁定了不同的有机发光体。这些材料的余辉持续几秒钟,经水熏蒸后消失,在湿热刺激下可重复熏蒸。将这些材料滴铸在玻璃载玻片上后,可通过激光直接写入实现激光图案化磷光,并通过水循环淬灭。这些成果为利用可持续天然产品设计智能刺激响应型磷光材料提供了机会。
Laser-rewritable room temperature phosphorescence based on in-situ polymerized tartaric acid
Organic room temperature phosphorescence (RTP) materials have potential applications in information technology and bioimaging. However, the precise control of the afterglow in reversible manners remains challenging for organic matters. Here, we report a kind of organic RTP material fabricated by simple heating mixtures of tartaric acid (TA) and aromatic acids, which can switch their phosphorescence by laser. Those mixtures show tunable phosphorescence from indigo to orange with phosphorescence efficiency of up to 53.99% due to locking different organic luminogens by the TA-formed matrix through the non-covalent interactions. The afterglow of those materials lasts a few seconds and disappears by water fumigation, which can be repeated in response to wet/heat stimuli. With drop-casting those materials on glass slides, a laser-repatternable phosphorescence is achieved by facile laser direct writing and quenched by water cyclically. Those results open the opportunity for the design of smart stimuli-responsive phosphorescence materials from sustainable natural products.
期刊介绍:
Science China Chemistry, co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China and published by Science China Press, publishes high-quality original research in both basic and applied chemistry. Indexed by Science Citation Index, it is a premier academic journal in the field.
Categories of articles include:
Highlights. Brief summaries and scholarly comments on recent research achievements in any field of chemistry.
Perspectives. Concise reports on thelatest chemistry trends of interest to scientists worldwide, including discussions of research breakthroughs and interpretations of important science and funding policies.
Reviews. In-depth summaries of representative results and achievements of the past 5–10 years in selected topics based on or closely related to the research expertise of the authors, providing a thorough assessment of the significance, current status, and future research directions of the field.