G Sheng, L Zhiyang, Z Ruiteng, Z Lei, Y Chengran, Z Zhengshen and M H Ang
{"title":"通过智能动作库实现情境机器人操纵","authors":"G Sheng, L Zhiyang, Z Ruiteng, Z Lei, Y Chengran, Z Zhengshen and M H Ang","doi":"10.1088/1742-6596/2805/1/012003","DOIUrl":null,"url":null,"abstract":"In the realm of conventional affordance detection, the primary objective is to provide insights into the potential uses of objects. However, a significant limitation remains as these conventional methods merely treat affordance detection as a semantic segmentation task, disregarding the crucial aspect of interpreting affordances for actions that can be performed by manipulator. To address this critical gap, we present a novel pipeline incorporating the Intelligent Action Library (IAL) concept. This framework enables affordance interpretation for various manipulation tasks, allowing robots to be taught and guided on how to execute specific actions based on the detected affordances and human-robot interaction. Through real-world experiments, we have demonstrated the ingenuity and dependability of our pipeline, effectively bridging the gap between affordance detection and manipulation task planning and execution. The integration of IAL facilitates a seamless connection between understanding affordances and empowering robots to perform tasks with precision and efficiency. The demo link is available to the public: https://youtu.be/_oBAer2Vl8k","PeriodicalId":16821,"journal":{"name":"Journal of Physics: Conference Series","volume":"92 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Affordance-informed Robotic Manipulation via Intelligent Action Library\",\"authors\":\"G Sheng, L Zhiyang, Z Ruiteng, Z Lei, Y Chengran, Z Zhengshen and M H Ang\",\"doi\":\"10.1088/1742-6596/2805/1/012003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the realm of conventional affordance detection, the primary objective is to provide insights into the potential uses of objects. However, a significant limitation remains as these conventional methods merely treat affordance detection as a semantic segmentation task, disregarding the crucial aspect of interpreting affordances for actions that can be performed by manipulator. To address this critical gap, we present a novel pipeline incorporating the Intelligent Action Library (IAL) concept. This framework enables affordance interpretation for various manipulation tasks, allowing robots to be taught and guided on how to execute specific actions based on the detected affordances and human-robot interaction. Through real-world experiments, we have demonstrated the ingenuity and dependability of our pipeline, effectively bridging the gap between affordance detection and manipulation task planning and execution. The integration of IAL facilitates a seamless connection between understanding affordances and empowering robots to perform tasks with precision and efficiency. The demo link is available to the public: https://youtu.be/_oBAer2Vl8k\",\"PeriodicalId\":16821,\"journal\":{\"name\":\"Journal of Physics: Conference Series\",\"volume\":\"92 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Conference Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1742-6596/2805/1/012003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Conference Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1742-6596/2805/1/012003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Affordance-informed Robotic Manipulation via Intelligent Action Library
In the realm of conventional affordance detection, the primary objective is to provide insights into the potential uses of objects. However, a significant limitation remains as these conventional methods merely treat affordance detection as a semantic segmentation task, disregarding the crucial aspect of interpreting affordances for actions that can be performed by manipulator. To address this critical gap, we present a novel pipeline incorporating the Intelligent Action Library (IAL) concept. This framework enables affordance interpretation for various manipulation tasks, allowing robots to be taught and guided on how to execute specific actions based on the detected affordances and human-robot interaction. Through real-world experiments, we have demonstrated the ingenuity and dependability of our pipeline, effectively bridging the gap between affordance detection and manipulation task planning and execution. The integration of IAL facilitates a seamless connection between understanding affordances and empowering robots to perform tasks with precision and efficiency. The demo link is available to the public: https://youtu.be/_oBAer2Vl8k