Xiyu Hou, Lianjun Wen, Fengyue He, Ran Zhuo, Lei Liu, Hailong Wang, Qing Zhong, Dong Pan and Jianhua Zhao
{"title":"通过分子束外延在砷化镓纳米线中嵌入高质量的 GaAs1-x Sb x 三元量子点","authors":"Xiyu Hou, Lianjun Wen, Fengyue He, Ran Zhuo, Lei Liu, Hailong Wang, Qing Zhong, Dong Pan and Jianhua Zhao","doi":"10.1088/1674-4926/24030038","DOIUrl":null,"url":null,"abstract":"Semiconductor quantum dots are promising candidates for preparing high-performance single photon sources. A basic requirement for this application is realizing the controlled growth of high-quality semiconductor quantum dots. Here, we report the growth of embedded GaAs1−xSbx quantum dots in GaAs nanowires by molecular-beam epitaxy. It is found that the size of the GaAs1−xSbx quantum dot can be well-defined by the GaAs nanowire. Energy dispersive spectroscopy analyses show that the antimony content x can be up to 0.36 by tuning the growth temperature. All GaAs1−xSbx quantum dots exhibit a pure zinc-blende phase. In addition, we have developed a new technology to grow GaAs passivation layers on the sidewalls of the GaAs1−xSbx quantum dots. Different from the traditional growth process of the passivation layer, GaAs passivation layers can be grown simultaneously with the growth of the embedded GaAs1−xSbx quantum dots. The spontaneous GaAs passivation layer shows a pure zinc-blende phase due to the strict epitaxial relationship between the quantum dot and the passivation layer. The successful fabrication of embedded high-quality GaAs1−xSbx quantum dots lays the foundation for the realization of GaAs1−xSbx-based single photon sources.","PeriodicalId":17038,"journal":{"name":"Journal of Semiconductors","volume":"193 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Embedded high-quality ternary GaAs1−x Sb x quantum dots in GaAs nanowires by molecular-beam epitaxy\",\"authors\":\"Xiyu Hou, Lianjun Wen, Fengyue He, Ran Zhuo, Lei Liu, Hailong Wang, Qing Zhong, Dong Pan and Jianhua Zhao\",\"doi\":\"10.1088/1674-4926/24030038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semiconductor quantum dots are promising candidates for preparing high-performance single photon sources. A basic requirement for this application is realizing the controlled growth of high-quality semiconductor quantum dots. Here, we report the growth of embedded GaAs1−xSbx quantum dots in GaAs nanowires by molecular-beam epitaxy. It is found that the size of the GaAs1−xSbx quantum dot can be well-defined by the GaAs nanowire. Energy dispersive spectroscopy analyses show that the antimony content x can be up to 0.36 by tuning the growth temperature. All GaAs1−xSbx quantum dots exhibit a pure zinc-blende phase. In addition, we have developed a new technology to grow GaAs passivation layers on the sidewalls of the GaAs1−xSbx quantum dots. Different from the traditional growth process of the passivation layer, GaAs passivation layers can be grown simultaneously with the growth of the embedded GaAs1−xSbx quantum dots. The spontaneous GaAs passivation layer shows a pure zinc-blende phase due to the strict epitaxial relationship between the quantum dot and the passivation layer. The successful fabrication of embedded high-quality GaAs1−xSbx quantum dots lays the foundation for the realization of GaAs1−xSbx-based single photon sources.\",\"PeriodicalId\":17038,\"journal\":{\"name\":\"Journal of Semiconductors\",\"volume\":\"193 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Semiconductors\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1674-4926/24030038\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Semiconductors","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-4926/24030038","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Embedded high-quality ternary GaAs1−x Sb x quantum dots in GaAs nanowires by molecular-beam epitaxy
Semiconductor quantum dots are promising candidates for preparing high-performance single photon sources. A basic requirement for this application is realizing the controlled growth of high-quality semiconductor quantum dots. Here, we report the growth of embedded GaAs1−xSbx quantum dots in GaAs nanowires by molecular-beam epitaxy. It is found that the size of the GaAs1−xSbx quantum dot can be well-defined by the GaAs nanowire. Energy dispersive spectroscopy analyses show that the antimony content x can be up to 0.36 by tuning the growth temperature. All GaAs1−xSbx quantum dots exhibit a pure zinc-blende phase. In addition, we have developed a new technology to grow GaAs passivation layers on the sidewalls of the GaAs1−xSbx quantum dots. Different from the traditional growth process of the passivation layer, GaAs passivation layers can be grown simultaneously with the growth of the embedded GaAs1−xSbx quantum dots. The spontaneous GaAs passivation layer shows a pure zinc-blende phase due to the strict epitaxial relationship between the quantum dot and the passivation layer. The successful fabrication of embedded high-quality GaAs1−xSbx quantum dots lays the foundation for the realization of GaAs1−xSbx-based single photon sources.