冈贝尔分布的新扩展与生物医学数据分析

IF 1.7 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES Journal of Radiation Research and Applied Sciences Pub Date : 2024-08-07 DOI:10.1016/j.jrras.2024.101055
Hanita Daud , Ahmad Abubakar Suleiman , Aliyu Ismail Ishaq , Najwan Alsadat , Mohammed Elgarhy , Abubakar Usman , Pitchaya Wiratchotisatian , Usman Abdullahi Ubale , Yu Liping
{"title":"冈贝尔分布的新扩展与生物医学数据分析","authors":"Hanita Daud ,&nbsp;Ahmad Abubakar Suleiman ,&nbsp;Aliyu Ismail Ishaq ,&nbsp;Najwan Alsadat ,&nbsp;Mohammed Elgarhy ,&nbsp;Abubakar Usman ,&nbsp;Pitchaya Wiratchotisatian ,&nbsp;Usman Abdullahi Ubale ,&nbsp;Yu Liping","doi":"10.1016/j.jrras.2024.101055","DOIUrl":null,"url":null,"abstract":"<div><p>In the field of biomedical research, data characteristics often exhibit significant variability, challenging the applicability of classical Gumbel distribution for biomedical data modeling. To address this, this paper introduces a novel extension of the Gumbel model known as the odd beta prime Gumbel (OBP-Gum) model. Derived from the odd beta prime family, the new distribution exhibits greater kurtosis compared to the traditional Gumbel distribution. Importantly, the proposed distribution is designed to capture right-skewed, left-skewed, and nearly symmetric density functions, as well as increasing, decreasing, constant, and upside-down bathtub shapes for its hazard rate function, providing excellent curvature features for creating flexible statistical models for biomedical research. We derive the fundamental features of the OBP-Gum model, such as the quantile function, linear representations, moment generating function, moments, skewness, kurtosis, incomplete moments, and Rényi and Tsallis entropies. Parameter estimation for this new model is conducted using the maximum likelihood estimation method. A simulation study demonstrates the performance of the model parameters. The empirical findings, based on applications to two biomedical datasets, suggest that the OBP-Gum distribution outperforms existing models, particularly in handling extreme observations. Instead of relying on conventional models for decision-making, this research provides relevant stakeholders with an improved statistical distribution for more accurate biomedical data modeling.</p></div>","PeriodicalId":16920,"journal":{"name":"Journal of Radiation Research and Applied Sciences","volume":"17 4","pages":"Article 101055"},"PeriodicalIF":1.7000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1687850724002395/pdfft?md5=961f9265865c7b94f77ee14f353f012f&pid=1-s2.0-S1687850724002395-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A new extension of the Gumbel distribution with biomedical data analysis\",\"authors\":\"Hanita Daud ,&nbsp;Ahmad Abubakar Suleiman ,&nbsp;Aliyu Ismail Ishaq ,&nbsp;Najwan Alsadat ,&nbsp;Mohammed Elgarhy ,&nbsp;Abubakar Usman ,&nbsp;Pitchaya Wiratchotisatian ,&nbsp;Usman Abdullahi Ubale ,&nbsp;Yu Liping\",\"doi\":\"10.1016/j.jrras.2024.101055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the field of biomedical research, data characteristics often exhibit significant variability, challenging the applicability of classical Gumbel distribution for biomedical data modeling. To address this, this paper introduces a novel extension of the Gumbel model known as the odd beta prime Gumbel (OBP-Gum) model. Derived from the odd beta prime family, the new distribution exhibits greater kurtosis compared to the traditional Gumbel distribution. Importantly, the proposed distribution is designed to capture right-skewed, left-skewed, and nearly symmetric density functions, as well as increasing, decreasing, constant, and upside-down bathtub shapes for its hazard rate function, providing excellent curvature features for creating flexible statistical models for biomedical research. We derive the fundamental features of the OBP-Gum model, such as the quantile function, linear representations, moment generating function, moments, skewness, kurtosis, incomplete moments, and Rényi and Tsallis entropies. Parameter estimation for this new model is conducted using the maximum likelihood estimation method. A simulation study demonstrates the performance of the model parameters. The empirical findings, based on applications to two biomedical datasets, suggest that the OBP-Gum distribution outperforms existing models, particularly in handling extreme observations. Instead of relying on conventional models for decision-making, this research provides relevant stakeholders with an improved statistical distribution for more accurate biomedical data modeling.</p></div>\",\"PeriodicalId\":16920,\"journal\":{\"name\":\"Journal of Radiation Research and Applied Sciences\",\"volume\":\"17 4\",\"pages\":\"Article 101055\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1687850724002395/pdfft?md5=961f9265865c7b94f77ee14f353f012f&pid=1-s2.0-S1687850724002395-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Radiation Research and Applied Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1687850724002395\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radiation Research and Applied Sciences","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1687850724002395","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在生物医学研究领域,数据特征往往表现出显著的可变性,这对经典 Gumbel 分布在生物医学数据建模中的适用性提出了挑战。为了解决这个问题,本文介绍了 Gumbel 模型的新扩展,即奇数贝塔素数 Gumbel(OBP-Gum)模型。与传统的 Gumbel 分布相比,源于奇数贝塔质数族的新分布表现出更大的峰度。重要的是,所提出的分布可捕捉右斜、左斜和近乎对称的密度函数,以及危险率函数的递增、递减、常数和倒置浴缸形状,为生物医学研究创建灵活的统计模型提供了极好的曲率特征。我们推导出了 OBP-Gum 模型的基本特征,如量子函数、线性表示、矩产生函数、矩、偏斜度、峰度、不完全矩以及雷尼熵和查利斯熵。新模型的参数估计采用最大似然估计法。模拟研究证明了模型参数的性能。应用于两个生物医学数据集的实证研究结果表明,OBP-Gum 分布优于现有模型,尤其是在处理极端观测数据方面。这项研究为相关人员提供了一种改进的统计分布,使生物医学数据建模更加准确,而不是依赖传统模型进行决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new extension of the Gumbel distribution with biomedical data analysis

In the field of biomedical research, data characteristics often exhibit significant variability, challenging the applicability of classical Gumbel distribution for biomedical data modeling. To address this, this paper introduces a novel extension of the Gumbel model known as the odd beta prime Gumbel (OBP-Gum) model. Derived from the odd beta prime family, the new distribution exhibits greater kurtosis compared to the traditional Gumbel distribution. Importantly, the proposed distribution is designed to capture right-skewed, left-skewed, and nearly symmetric density functions, as well as increasing, decreasing, constant, and upside-down bathtub shapes for its hazard rate function, providing excellent curvature features for creating flexible statistical models for biomedical research. We derive the fundamental features of the OBP-Gum model, such as the quantile function, linear representations, moment generating function, moments, skewness, kurtosis, incomplete moments, and Rényi and Tsallis entropies. Parameter estimation for this new model is conducted using the maximum likelihood estimation method. A simulation study demonstrates the performance of the model parameters. The empirical findings, based on applications to two biomedical datasets, suggest that the OBP-Gum distribution outperforms existing models, particularly in handling extreme observations. Instead of relying on conventional models for decision-making, this research provides relevant stakeholders with an improved statistical distribution for more accurate biomedical data modeling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
5.90%
发文量
130
审稿时长
16 weeks
期刊介绍: Journal of Radiation Research and Applied Sciences provides a high quality medium for the publication of substantial, original and scientific and technological papers on the development and applications of nuclear, radiation and isotopes in biology, medicine, drugs, biochemistry, microbiology, agriculture, entomology, food technology, chemistry, physics, solid states, engineering, environmental and applied sciences.
期刊最新文献
The impact of radiologists’ characteristics on the detection of COVID-19 in chest CT scans Effects of thermal radiation on TiO2-Cu/water hybrid nanofluid: A finite difference discretization Coronary computed tomographic angiography predicts crossing through chronic total occlusion within three guidewires Detection of clavicle fracture after martial arts training based on 3D segmentation and multi-perspective fusion Application of ultrasonic imaging technology in beef cattle breeding management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1