{"title":"利用基于傅立叶神经算子的机器学习策略预测湍流通道流动","authors":"Yunpeng Wang, Zhijie Li, Zelong Yuan, Wenhui Peng, Tianyuan Liu, Jianchun Wang","doi":"10.1103/physrevfluids.9.084604","DOIUrl":null,"url":null,"abstract":"Fast and accurate predictions of turbulent flows are of great importance in the science and engineering field. In this paper, we investigate the implicit U-Net enhanced Fourier neural operator (IUFNO) in the stable prediction of long-time dynamics of three-dimensional (3D) turbulent channel flows. The trained IUFNO models are tested in the large-eddy simulations (LES) at coarse grids for three friction Reynolds numbers: <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mtext>Re</mtext><mi>τ</mi></msub><mo>≈</mo><mn>180</mn></mrow></math>, 395, and 590. The adopted near-wall mesh grids are tangibly coarser than the general requirements for wall-resolved LES. Compared to the original Fourier neural operator (FNO), the implicit FNO (IFNO), and U-Net enhanced FNO (UFNO), the IUFNO model has a much better long-term predictive ability. The numerical experiments show that the IUFNO framework outperforms the traditional dynamic Smagorinsky model and the wall-adapted local eddy-viscosity model in the predictions of a variety of flow statistics and structures, including the mean and fluctuating velocities, the probability density functions (PDFs) and joint PDF of velocity fluctuations, the Reynolds stress profile, the kinetic energy spectrum, and the Q-criterion (vortex structures). Meanwhile, the trained IUFNO models are computationally much faster than the traditional LES models. Thus, the IUFNO model is a promising approach for the fast prediction of wall-bounded turbulent flow.","PeriodicalId":20160,"journal":{"name":"Physical Review Fluids","volume":"24 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of turbulent channel flow using Fourier neural operator-based machine-learning strategy\",\"authors\":\"Yunpeng Wang, Zhijie Li, Zelong Yuan, Wenhui Peng, Tianyuan Liu, Jianchun Wang\",\"doi\":\"10.1103/physrevfluids.9.084604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fast and accurate predictions of turbulent flows are of great importance in the science and engineering field. In this paper, we investigate the implicit U-Net enhanced Fourier neural operator (IUFNO) in the stable prediction of long-time dynamics of three-dimensional (3D) turbulent channel flows. The trained IUFNO models are tested in the large-eddy simulations (LES) at coarse grids for three friction Reynolds numbers: <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mtext>Re</mtext><mi>τ</mi></msub><mo>≈</mo><mn>180</mn></mrow></math>, 395, and 590. The adopted near-wall mesh grids are tangibly coarser than the general requirements for wall-resolved LES. Compared to the original Fourier neural operator (FNO), the implicit FNO (IFNO), and U-Net enhanced FNO (UFNO), the IUFNO model has a much better long-term predictive ability. The numerical experiments show that the IUFNO framework outperforms the traditional dynamic Smagorinsky model and the wall-adapted local eddy-viscosity model in the predictions of a variety of flow statistics and structures, including the mean and fluctuating velocities, the probability density functions (PDFs) and joint PDF of velocity fluctuations, the Reynolds stress profile, the kinetic energy spectrum, and the Q-criterion (vortex structures). Meanwhile, the trained IUFNO models are computationally much faster than the traditional LES models. Thus, the IUFNO model is a promising approach for the fast prediction of wall-bounded turbulent flow.\",\"PeriodicalId\":20160,\"journal\":{\"name\":\"Physical Review Fluids\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Fluids\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevfluids.9.084604\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Fluids","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevfluids.9.084604","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
Prediction of turbulent channel flow using Fourier neural operator-based machine-learning strategy
Fast and accurate predictions of turbulent flows are of great importance in the science and engineering field. In this paper, we investigate the implicit U-Net enhanced Fourier neural operator (IUFNO) in the stable prediction of long-time dynamics of three-dimensional (3D) turbulent channel flows. The trained IUFNO models are tested in the large-eddy simulations (LES) at coarse grids for three friction Reynolds numbers: , 395, and 590. The adopted near-wall mesh grids are tangibly coarser than the general requirements for wall-resolved LES. Compared to the original Fourier neural operator (FNO), the implicit FNO (IFNO), and U-Net enhanced FNO (UFNO), the IUFNO model has a much better long-term predictive ability. The numerical experiments show that the IUFNO framework outperforms the traditional dynamic Smagorinsky model and the wall-adapted local eddy-viscosity model in the predictions of a variety of flow statistics and structures, including the mean and fluctuating velocities, the probability density functions (PDFs) and joint PDF of velocity fluctuations, the Reynolds stress profile, the kinetic energy spectrum, and the Q-criterion (vortex structures). Meanwhile, the trained IUFNO models are computationally much faster than the traditional LES models. Thus, the IUFNO model is a promising approach for the fast prediction of wall-bounded turbulent flow.
期刊介绍:
Physical Review Fluids is APS’s newest online-only journal dedicated to publishing innovative research that will significantly advance the fundamental understanding of fluid dynamics. Physical Review Fluids expands the scope of the APS journals to include additional areas of fluid dynamics research, complements the existing Physical Review collection, and maintains the same quality and reputation that authors and subscribers expect from APS. The journal is published with the endorsement of the APS Division of Fluid Dynamics.