通过整合实现无梯度优化

Christophe Andrieu, Nicolas Chopin, Ettore Fincato, Mathieu Gerber
{"title":"通过整合实现无梯度优化","authors":"Christophe Andrieu, Nicolas Chopin, Ettore Fincato, Mathieu Gerber","doi":"arxiv-2408.00888","DOIUrl":null,"url":null,"abstract":"In this paper we propose a novel, general purpose, algorithm to optimize\nfunctions $l\\colon \\mathbb{R}^d \\rightarrow \\mathbb{R}$ not assumed to be\nconvex or differentiable or even continuous. The main idea is to sequentially\nfit a sequence of parametric probability densities, possessing a concentration\nproperty, to $l$ using a Bayesian update followed by a reprojection back onto\nthe chosen parametric sequence. Remarkably, with the sequence chosen to be from\nthe exponential family, reprojection essentially boils down to the computation\nof expectations. Our algorithm therefore lends itself to Monte Carlo\napproximation, ranging from plain to Sequential Monte Carlo (SMC) methods. The algorithm is therefore particularly simple to implement and we illustrate\nperformance on a challenging Machine Learning classification problem. Our\nmethodology naturally extends to the scenario where only noisy measurements of\n$l$ are available and retains ease of implementation and performance. At a\ntheoretical level we establish, in a fairly general scenario, that our\nframework can be viewed as implicitly implementing a time inhomogeneous\ngradient descent algorithm on a sequence of smoothed approximations of $l$.\nThis opens the door to establishing convergence of the algorithm and provide\ntheoretical guarantees. Along the way, we establish new results for\ninhomogeneous gradient descent algorithms of independent interest.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gradient-free optimization via integration\",\"authors\":\"Christophe Andrieu, Nicolas Chopin, Ettore Fincato, Mathieu Gerber\",\"doi\":\"arxiv-2408.00888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a novel, general purpose, algorithm to optimize\\nfunctions $l\\\\colon \\\\mathbb{R}^d \\\\rightarrow \\\\mathbb{R}$ not assumed to be\\nconvex or differentiable or even continuous. The main idea is to sequentially\\nfit a sequence of parametric probability densities, possessing a concentration\\nproperty, to $l$ using a Bayesian update followed by a reprojection back onto\\nthe chosen parametric sequence. Remarkably, with the sequence chosen to be from\\nthe exponential family, reprojection essentially boils down to the computation\\nof expectations. Our algorithm therefore lends itself to Monte Carlo\\napproximation, ranging from plain to Sequential Monte Carlo (SMC) methods. The algorithm is therefore particularly simple to implement and we illustrate\\nperformance on a challenging Machine Learning classification problem. Our\\nmethodology naturally extends to the scenario where only noisy measurements of\\n$l$ are available and retains ease of implementation and performance. At a\\ntheoretical level we establish, in a fairly general scenario, that our\\nframework can be viewed as implicitly implementing a time inhomogeneous\\ngradient descent algorithm on a sequence of smoothed approximations of $l$.\\nThis opens the door to establishing convergence of the algorithm and provide\\ntheoretical guarantees. Along the way, we establish new results for\\ninhomogeneous gradient descent algorithms of independent interest.\",\"PeriodicalId\":501215,\"journal\":{\"name\":\"arXiv - STAT - Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.00888\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.00888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种新颖的、通用的算法来优化函数$l\colon \mathbb{R}^d \rightarrow \mathbb{R}$,该算法不假定函数是凸的或可微的,甚至是连续的。其主要思路是利用贝叶斯更新,将具有集中属性的参数概率密度序列依次拟合到 $l$,然后再投影回所选的参数序列。值得注意的是,如果选择的序列来自指数族,重投影基本上可以归结为期望值的计算。因此,我们的算法适用于蒙特卡罗逼近,包括普通蒙特卡罗方法和序列蒙特卡罗(SMC)方法。因此,该算法的实现特别简单,我们在一个具有挑战性的机器学习分类问题上展示了该算法的性能。我们的方法可以自然地扩展到只有对$l$的噪声测量的情况,并且保持了实施的简便性和性能。在理论层面,我们在一个相当普遍的场景中建立了我们的框架,该框架可被视为在$l$的平滑近似值序列上隐式地实现了时间不均匀梯度下降算法。在此过程中,我们建立了具有独立意义的非均质梯度下降算法的新结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gradient-free optimization via integration
In this paper we propose a novel, general purpose, algorithm to optimize functions $l\colon \mathbb{R}^d \rightarrow \mathbb{R}$ not assumed to be convex or differentiable or even continuous. The main idea is to sequentially fit a sequence of parametric probability densities, possessing a concentration property, to $l$ using a Bayesian update followed by a reprojection back onto the chosen parametric sequence. Remarkably, with the sequence chosen to be from the exponential family, reprojection essentially boils down to the computation of expectations. Our algorithm therefore lends itself to Monte Carlo approximation, ranging from plain to Sequential Monte Carlo (SMC) methods. The algorithm is therefore particularly simple to implement and we illustrate performance on a challenging Machine Learning classification problem. Our methodology naturally extends to the scenario where only noisy measurements of $l$ are available and retains ease of implementation and performance. At a theoretical level we establish, in a fairly general scenario, that our framework can be viewed as implicitly implementing a time inhomogeneous gradient descent algorithm on a sequence of smoothed approximations of $l$. This opens the door to establishing convergence of the algorithm and provide theoretical guarantees. Along the way, we establish new results for inhomogeneous gradient descent algorithms of independent interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model-Embedded Gaussian Process Regression for Parameter Estimation in Dynamical System Effects of the entropy source on Monte Carlo simulations A Robust Approach to Gaussian Processes Implementation HJ-sampler: A Bayesian sampler for inverse problems of a stochastic process by leveraging Hamilton-Jacobi PDEs and score-based generative models Reducing Shape-Graph Complexity with Application to Classification of Retinal Blood Vessels and Neurons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1