Wen Wang , Wenhao Fei , Muhammad Bilal , Xiaolong Xu
{"title":"用于无人机增强型物联网中服务器部署和分布式卸载的自适应泛在学习","authors":"Wen Wang , Wenhao Fei , Muhammad Bilal , Xiaolong Xu","doi":"10.1016/j.chb.2024.108393","DOIUrl":null,"url":null,"abstract":"<div><p>Through creating an environment rich in computational and communication capabilities, ubiquitous computing gradually integrates it with human activities. Inspired by adaptive ubiquitous learning, various intelligent devices (e.g., roadside units and infrared sensors) deployed in the Internet of Vehicles (IoV) are expected to be critical to mitigating urban traffic congestion and enhancing travel safety. In addition, benefiting from the advantages of high mobility and real-time response, Unmanned Aerial Vehicles (UAVs) embody substantial prospects to assist IoV in efficiently and flexibly handling latency-sensitive, computation-intensive tasks. Nevertheless, due to time-varying demands and heterogeneous computing resources, it is challenging to provide effective service for mobile devices while guaranteeing high-quality data transmission. Therefore, a distributed service offloading system framework in UAV-enhanced IoV is designed. To minimize the service latency, a game theory-based distributed service offloading algorithm, named G-DSO, is proposed to realize adaptive ubiquitous learning for service request distribution. Finally, numerous experiments are implemented based on real-world service requirement datasets. Experimental results demonstrate that the proposed G-DSO approach improves the hit rate by 2.68% to 74.42% compared with four existing service offloading methods, verifying the effectiveness and good scalability of G-DSO.</p></div>","PeriodicalId":48471,"journal":{"name":"Computers in Human Behavior","volume":"161 ","pages":"Article 108393"},"PeriodicalIF":9.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0747563224002619/pdfft?md5=c31404e436579ef3dc6bb5049666568e&pid=1-s2.0-S0747563224002619-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Adaptive ubiquitous learning for server deployment and distributed offloading in UAV-enhanced IoV\",\"authors\":\"Wen Wang , Wenhao Fei , Muhammad Bilal , Xiaolong Xu\",\"doi\":\"10.1016/j.chb.2024.108393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Through creating an environment rich in computational and communication capabilities, ubiquitous computing gradually integrates it with human activities. Inspired by adaptive ubiquitous learning, various intelligent devices (e.g., roadside units and infrared sensors) deployed in the Internet of Vehicles (IoV) are expected to be critical to mitigating urban traffic congestion and enhancing travel safety. In addition, benefiting from the advantages of high mobility and real-time response, Unmanned Aerial Vehicles (UAVs) embody substantial prospects to assist IoV in efficiently and flexibly handling latency-sensitive, computation-intensive tasks. Nevertheless, due to time-varying demands and heterogeneous computing resources, it is challenging to provide effective service for mobile devices while guaranteeing high-quality data transmission. Therefore, a distributed service offloading system framework in UAV-enhanced IoV is designed. To minimize the service latency, a game theory-based distributed service offloading algorithm, named G-DSO, is proposed to realize adaptive ubiquitous learning for service request distribution. Finally, numerous experiments are implemented based on real-world service requirement datasets. Experimental results demonstrate that the proposed G-DSO approach improves the hit rate by 2.68% to 74.42% compared with four existing service offloading methods, verifying the effectiveness and good scalability of G-DSO.</p></div>\",\"PeriodicalId\":48471,\"journal\":{\"name\":\"Computers in Human Behavior\",\"volume\":\"161 \",\"pages\":\"Article 108393\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0747563224002619/pdfft?md5=c31404e436579ef3dc6bb5049666568e&pid=1-s2.0-S0747563224002619-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in Human Behavior\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0747563224002619\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in Human Behavior","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747563224002619","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
Adaptive ubiquitous learning for server deployment and distributed offloading in UAV-enhanced IoV
Through creating an environment rich in computational and communication capabilities, ubiquitous computing gradually integrates it with human activities. Inspired by adaptive ubiquitous learning, various intelligent devices (e.g., roadside units and infrared sensors) deployed in the Internet of Vehicles (IoV) are expected to be critical to mitigating urban traffic congestion and enhancing travel safety. In addition, benefiting from the advantages of high mobility and real-time response, Unmanned Aerial Vehicles (UAVs) embody substantial prospects to assist IoV in efficiently and flexibly handling latency-sensitive, computation-intensive tasks. Nevertheless, due to time-varying demands and heterogeneous computing resources, it is challenging to provide effective service for mobile devices while guaranteeing high-quality data transmission. Therefore, a distributed service offloading system framework in UAV-enhanced IoV is designed. To minimize the service latency, a game theory-based distributed service offloading algorithm, named G-DSO, is proposed to realize adaptive ubiquitous learning for service request distribution. Finally, numerous experiments are implemented based on real-world service requirement datasets. Experimental results demonstrate that the proposed G-DSO approach improves the hit rate by 2.68% to 74.42% compared with four existing service offloading methods, verifying the effectiveness and good scalability of G-DSO.
期刊介绍:
Computers in Human Behavior is a scholarly journal that explores the psychological aspects of computer use. It covers original theoretical works, research reports, literature reviews, and software and book reviews. The journal examines both the use of computers in psychology, psychiatry, and related fields, and the psychological impact of computer use on individuals, groups, and society. Articles discuss topics such as professional practice, training, research, human development, learning, cognition, personality, and social interactions. It focuses on human interactions with computers, considering the computer as a medium through which human behaviors are shaped and expressed. Professionals interested in the psychological aspects of computer use will find this journal valuable, even with limited knowledge of computers.