布朗卡诺制冷器的最大功勋值性能

IF 2.4 3区 物理与天体物理 Q1 Mathematics Physical review. E Pub Date : 2024-08-12 DOI:10.1103/physreve.110.024123
O. Contreras-Vergara, G. Valencia-Ortega, N. Sánchez-Salas, J. I. Jiménez-Aquino
{"title":"布朗卡诺制冷器的最大功勋值性能","authors":"O. Contreras-Vergara, G. Valencia-Ortega, N. Sánchez-Salas, J. I. Jiménez-Aquino","doi":"10.1103/physreve.110.024123","DOIUrl":null,"url":null,"abstract":"This paper focuses on the coefficient of performance (COP) at maximum <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>χ</mi><mi>R</mi></msup></math> figure of merit for a Brownian Carnot-like refrigerator, within the context of the low-dissipation approach. Our proposal is based on the Langevin equation for a Brownian particle bounded to a harmonic potential trap, which can perform Carnot-like cycles at finite time. The theoretical approach is related to the equilibrium ensemble average of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mo>〈</mo><msup><mi>x</mi><mn>2</mn></msup><mo>〉</mo></mrow><mi>eq</mi></msub></math> which plays the role of a <i>statelike</i> equation, <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>x</mi></math> being the Brownian particle position. This statelike equation comes from the macroscopic version of the corresponding Langevin equation for a Brownian particle. We show that under quasistatic conditions the COP has the same expression as the macroscopic Carnot refrigerator, while for irreversible cycles at finite time and under symmetric dissipation the optimal COP is the counterpart of Curzon-Ahlborn efficiency as also obtained for irreversible macroscopic refrigerators.","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"13 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance at maximum figure of merit for a Brownian Carnot refrigerator\",\"authors\":\"O. Contreras-Vergara, G. Valencia-Ortega, N. Sánchez-Salas, J. I. Jiménez-Aquino\",\"doi\":\"10.1103/physreve.110.024123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on the coefficient of performance (COP) at maximum <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mi>χ</mi><mi>R</mi></msup></math> figure of merit for a Brownian Carnot-like refrigerator, within the context of the low-dissipation approach. Our proposal is based on the Langevin equation for a Brownian particle bounded to a harmonic potential trap, which can perform Carnot-like cycles at finite time. The theoretical approach is related to the equilibrium ensemble average of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mo>〈</mo><msup><mi>x</mi><mn>2</mn></msup><mo>〉</mo></mrow><mi>eq</mi></msub></math> which plays the role of a <i>statelike</i> equation, <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>x</mi></math> being the Brownian particle position. This statelike equation comes from the macroscopic version of the corresponding Langevin equation for a Brownian particle. We show that under quasistatic conditions the COP has the same expression as the macroscopic Carnot refrigerator, while for irreversible cycles at finite time and under symmetric dissipation the optimal COP is the counterpart of Curzon-Ahlborn efficiency as also obtained for irreversible macroscopic refrigerators.\",\"PeriodicalId\":20085,\"journal\":{\"name\":\"Physical review. E\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review. E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physreve.110.024123\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreve.110.024123","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文的重点是在低耗散方法的背景下,研究类似卡诺的布朗冰箱在最大 χR 功勋值时的性能系数(COP)。我们的建议基于布朗粒子的朗格文方程,该布朗粒子以谐波势阱为界,可在有限时间内进行类似卡诺的循环。理论方法与〈x2〉eq 的平衡集合平均值有关,该集合平均值起着类似于静态方程的作用,x 是布朗粒子的位置。这个类静态方程来自布朗粒子的相应朗文方程的宏观版本。我们的研究表明,在准静态条件下,COP 的表达式与宏观卡诺冰箱相同,而对于有限时间内的不可逆循环和对称耗散,最佳 COP 是 Curzon-Ahlborn 效率的对应物,这也是在不可逆宏观冰箱中获得的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance at maximum figure of merit for a Brownian Carnot refrigerator
This paper focuses on the coefficient of performance (COP) at maximum χR figure of merit for a Brownian Carnot-like refrigerator, within the context of the low-dissipation approach. Our proposal is based on the Langevin equation for a Brownian particle bounded to a harmonic potential trap, which can perform Carnot-like cycles at finite time. The theoretical approach is related to the equilibrium ensemble average of x2eq which plays the role of a statelike equation, x being the Brownian particle position. This statelike equation comes from the macroscopic version of the corresponding Langevin equation for a Brownian particle. We show that under quasistatic conditions the COP has the same expression as the macroscopic Carnot refrigerator, while for irreversible cycles at finite time and under symmetric dissipation the optimal COP is the counterpart of Curzon-Ahlborn efficiency as also obtained for irreversible macroscopic refrigerators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical review. E
Physical review. E 物理-物理:流体与等离子体
CiteScore
4.60
自引率
16.70%
发文量
0
审稿时长
3.3 months
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
期刊最新文献
Attractive-repulsive interaction in coupled quantum oscillators Theoretical analysis of the structure, thermodynamics, and shear elasticity of deeply metastable hard sphere fluids Wakefield-driven filamentation of warm beams in plasma Erratum: General existence and determination of conjugate fields in dynamically ordered magnetic systems [Phys. Rev. E 104, 044125 (2021)] Death-birth adaptive dynamics: modeling trait evolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1