Abraham P. Vinod;Sleiman Safaoui;Tyler H. Summers;Nobuyuki Yoshikawa;Stefano Di Cairano
{"title":"通过过滤强化学习实现不确定性条件下无人机的分散、安全、多代理运动规划","authors":"Abraham P. Vinod;Sleiman Safaoui;Tyler H. Summers;Nobuyuki Yoshikawa;Stefano Di Cairano","doi":"10.1109/TCST.2024.3433229","DOIUrl":null,"url":null,"abstract":"We propose a decentralized, multiagent motion planner that guarantees the probabilistic safety of a team subject to stochastic uncertainty in the agent model and environment. Our scalable approach generates safe motion plans in real-time using off-the-shelf, single-agent reinforcement learning (RL) rendered safe using distributionally robust, convex optimization and buffered Voronoi cells. We guarantee the recursive feasibility of the mean trajectories and mitigate the conservativeness using a temporal discounting of safety. We show in simulation that our approach generates safe and high-performant trajectories as compared to existing approaches, and further validate these observations in physical experiments using drones.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"32 6","pages":"2492-2499"},"PeriodicalIF":4.9000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decentralized, Safe, Multiagent Motion Planning for Drones Under Uncertainty via Filtered Reinforcement Learning\",\"authors\":\"Abraham P. Vinod;Sleiman Safaoui;Tyler H. Summers;Nobuyuki Yoshikawa;Stefano Di Cairano\",\"doi\":\"10.1109/TCST.2024.3433229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a decentralized, multiagent motion planner that guarantees the probabilistic safety of a team subject to stochastic uncertainty in the agent model and environment. Our scalable approach generates safe motion plans in real-time using off-the-shelf, single-agent reinforcement learning (RL) rendered safe using distributionally robust, convex optimization and buffered Voronoi cells. We guarantee the recursive feasibility of the mean trajectories and mitigate the conservativeness using a temporal discounting of safety. We show in simulation that our approach generates safe and high-performant trajectories as compared to existing approaches, and further validate these observations in physical experiments using drones.\",\"PeriodicalId\":13103,\"journal\":{\"name\":\"IEEE Transactions on Control Systems Technology\",\"volume\":\"32 6\",\"pages\":\"2492-2499\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Control Systems Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10627971/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Control Systems Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10627971/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Decentralized, Safe, Multiagent Motion Planning for Drones Under Uncertainty via Filtered Reinforcement Learning
We propose a decentralized, multiagent motion planner that guarantees the probabilistic safety of a team subject to stochastic uncertainty in the agent model and environment. Our scalable approach generates safe motion plans in real-time using off-the-shelf, single-agent reinforcement learning (RL) rendered safe using distributionally robust, convex optimization and buffered Voronoi cells. We guarantee the recursive feasibility of the mean trajectories and mitigate the conservativeness using a temporal discounting of safety. We show in simulation that our approach generates safe and high-performant trajectories as compared to existing approaches, and further validate these observations in physical experiments using drones.
期刊介绍:
The IEEE Transactions on Control Systems Technology publishes high quality technical papers on technological advances in control engineering. The word technology is from the Greek technologia. The modern meaning is a scientific method to achieve a practical purpose. Control Systems Technology includes all aspects of control engineering needed to implement practical control systems, from analysis and design, through simulation and hardware. A primary purpose of the IEEE Transactions on Control Systems Technology is to have an archival publication which will bridge the gap between theory and practice. Papers are published in the IEEE Transactions on Control System Technology which disclose significant new knowledge, exploratory developments, or practical applications in all aspects of technology needed to implement control systems, from analysis and design through simulation, and hardware.