螺旋纤维增强生物复合材料的断裂力学模型

IF 6.3 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES Composite Structures Pub Date : 2024-07-30 DOI:10.1016/j.compstruct.2024.118430
{"title":"螺旋纤维增强生物复合材料的断裂力学模型","authors":"","doi":"10.1016/j.compstruct.2024.118430","DOIUrl":null,"url":null,"abstract":"<div><p>Many biological materials such as tendons and muscles contain helical fibers. In this paper, the fracture behavior of such chiral composites is investigated through a combination of theoretical analysis and finite element simulations. A mesoscopic fracture mechanics model of helical fiber-reinforced biological composites is presented, with the effects of interfacial damage and fiber breakage. A cohesive law is adopted to characterize the interfacial damage induced by the relative slipping between the fibers and the matrix. The theoretical model agrees well with the numerical results. The optimized fiber radius that can maximize the fracture toughness of the composites is determined. The effects of interfacial (e.g., bonding strength and energy dissipation) and material properties (e.g., strength and elastic modulus) on the resistance to crack propagation are revealed. Our results show that the composites reinforced by helical fibers exhibit comprehensively excellent mechanical properties, e.g., simultaneous high strength, stiffness, and fracture toughness. This work not only helps understand the structure–property interrelations of biological chiral composites, but also provides inspirations for designing high-performance engineering materials.</p></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fracture mechanics model of biological composites reinforced by helical fibers\",\"authors\":\"\",\"doi\":\"10.1016/j.compstruct.2024.118430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Many biological materials such as tendons and muscles contain helical fibers. In this paper, the fracture behavior of such chiral composites is investigated through a combination of theoretical analysis and finite element simulations. A mesoscopic fracture mechanics model of helical fiber-reinforced biological composites is presented, with the effects of interfacial damage and fiber breakage. A cohesive law is adopted to characterize the interfacial damage induced by the relative slipping between the fibers and the matrix. The theoretical model agrees well with the numerical results. The optimized fiber radius that can maximize the fracture toughness of the composites is determined. The effects of interfacial (e.g., bonding strength and energy dissipation) and material properties (e.g., strength and elastic modulus) on the resistance to crack propagation are revealed. Our results show that the composites reinforced by helical fibers exhibit comprehensively excellent mechanical properties, e.g., simultaneous high strength, stiffness, and fracture toughness. This work not only helps understand the structure–property interrelations of biological chiral composites, but also provides inspirations for designing high-performance engineering materials.</p></div>\",\"PeriodicalId\":281,\"journal\":{\"name\":\"Composite Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composite Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263822324005580\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822324005580","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

许多生物材料(如肌腱和肌肉)都含有螺旋纤维。本文通过理论分析和有限元模拟相结合的方法,研究了这类手性复合材料的断裂行为。本文提出了螺旋纤维增强生物复合材料的介观断裂力学模型,其中包括界面损伤和纤维断裂的影响。该模型采用内聚定律来描述纤维与基体之间的相对滑动所引起的界面损伤。理论模型与数值结果吻合良好。确定了能使复合材料断裂韧性最大化的优化纤维半径。研究揭示了界面(如粘结强度和能量耗散)和材料特性(如强度和弹性模量)对抗裂性的影响。我们的研究结果表明,螺旋纤维增强的复合材料表现出全面优异的机械性能,例如同时具有高强度、刚度和断裂韧性。这项工作不仅有助于理解生物手性复合材料的结构-性能相互关系,还为设计高性能工程材料提供了灵感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fracture mechanics model of biological composites reinforced by helical fibers

Many biological materials such as tendons and muscles contain helical fibers. In this paper, the fracture behavior of such chiral composites is investigated through a combination of theoretical analysis and finite element simulations. A mesoscopic fracture mechanics model of helical fiber-reinforced biological composites is presented, with the effects of interfacial damage and fiber breakage. A cohesive law is adopted to characterize the interfacial damage induced by the relative slipping between the fibers and the matrix. The theoretical model agrees well with the numerical results. The optimized fiber radius that can maximize the fracture toughness of the composites is determined. The effects of interfacial (e.g., bonding strength and energy dissipation) and material properties (e.g., strength and elastic modulus) on the resistance to crack propagation are revealed. Our results show that the composites reinforced by helical fibers exhibit comprehensively excellent mechanical properties, e.g., simultaneous high strength, stiffness, and fracture toughness. This work not only helps understand the structure–property interrelations of biological chiral composites, but also provides inspirations for designing high-performance engineering materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composite Structures
Composite Structures 工程技术-材料科学:复合
CiteScore
12.00
自引率
12.70%
发文量
1246
审稿时长
78 days
期刊介绍: The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials. The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.
期刊最新文献
Editorial Board Corrigendum to “Self-contacting metamaterials achieving asymmetric, non-reciprocal, and adjustable Poisson’s ratios that break thermodynamic limits” [Compos. Struct. 348 (2024) 118486] A size-dependent nonlinear analysis of perovskite solar panels with FG-CNTR-TPMS substrates Editorial Board Sensors integration for structural health monitoring in composite pressure vessels: A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1