乙酰乳酸合成酶的三维结构解释了为什么 Asp-376-Glu 点突变对不同咪唑啉酮类除草剂的抗性水平不同

IF 4.2 1区 农林科学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pesticide Biochemistry and Physiology Pub Date : 2024-08-05 DOI:10.1016/j.pestbp.2024.106070
{"title":"乙酰乳酸合成酶的三维结构解释了为什么 Asp-376-Glu 点突变对不同咪唑啉酮类除草剂的抗性水平不同","authors":"","doi":"10.1016/j.pestbp.2024.106070","DOIUrl":null,"url":null,"abstract":"<div><p>Resistance to ALS-inhibiting herbicides has dramatically increased worldwide due to the persisting evolution of target site mutations that reduce the affinity between the herbicide and the target. We evaluated the effect of the well-known ALS Asp-376-Glu target site mutation on different imidazolinone herbicides, including imazamox and imazethapyr. Greenhouse dose response experiments indicate that the <em>Amaranthus retroflexus</em> biotype carrying Asp-376-Glu was fully controlled by applying the field recommended dose of imazamox, whereas it displayed high level of resistance to imazethapyr. Likewise, <em>Sorghum halepense</em>, carrying Asp-376-Glu showed resistance to field recommended doses of imazethapyr but not of imazamox. Biochemical inhibition and kinetic characterization of the Asp-376-Glu mutant enzyme heterologously expressed using different plant sequence backbones, indicate that the Asp-376-Glu shows high level of insensitivity to imazethapyr but not to imazamox<em>,</em> corroborating the greenhouse results. Docking simulations revealed that imazamox can still inhibit the Asp-376-Glu mutant enzyme through a chalcogen interaction between the oxygen of the ligand and the sulfur atom of the ALS Met200, while imazethapyr does not create such interaction. These results explain the different sensitivity of the Asp-376-Glu mutation towards imidazolinone herbicides, thus providing novel information that can be exploited for defining stewardship guidelines to manage fields infested by weeds harboring the Asp-376-Glu mutation.</p></div>","PeriodicalId":19828,"journal":{"name":"Pesticide Biochemistry and Physiology","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0048357524003031/pdfft?md5=61e26df9647a1e75494e966e9649b108&pid=1-s2.0-S0048357524003031-main.pdf","citationCount":"0","resultStr":"{\"title\":\"3D structure of acetolactate synthase explains why the Asp-376-Glu point mutation does not give the same resistance level to different imidazolinone herbicides\",\"authors\":\"\",\"doi\":\"10.1016/j.pestbp.2024.106070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Resistance to ALS-inhibiting herbicides has dramatically increased worldwide due to the persisting evolution of target site mutations that reduce the affinity between the herbicide and the target. We evaluated the effect of the well-known ALS Asp-376-Glu target site mutation on different imidazolinone herbicides, including imazamox and imazethapyr. Greenhouse dose response experiments indicate that the <em>Amaranthus retroflexus</em> biotype carrying Asp-376-Glu was fully controlled by applying the field recommended dose of imazamox, whereas it displayed high level of resistance to imazethapyr. Likewise, <em>Sorghum halepense</em>, carrying Asp-376-Glu showed resistance to field recommended doses of imazethapyr but not of imazamox. Biochemical inhibition and kinetic characterization of the Asp-376-Glu mutant enzyme heterologously expressed using different plant sequence backbones, indicate that the Asp-376-Glu shows high level of insensitivity to imazethapyr but not to imazamox<em>,</em> corroborating the greenhouse results. Docking simulations revealed that imazamox can still inhibit the Asp-376-Glu mutant enzyme through a chalcogen interaction between the oxygen of the ligand and the sulfur atom of the ALS Met200, while imazethapyr does not create such interaction. These results explain the different sensitivity of the Asp-376-Glu mutation towards imidazolinone herbicides, thus providing novel information that can be exploited for defining stewardship guidelines to manage fields infested by weeds harboring the Asp-376-Glu mutation.</p></div>\",\"PeriodicalId\":19828,\"journal\":{\"name\":\"Pesticide Biochemistry and Physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0048357524003031/pdfft?md5=61e26df9647a1e75494e966e9649b108&pid=1-s2.0-S0048357524003031-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pesticide Biochemistry and Physiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0048357524003031\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pesticide Biochemistry and Physiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048357524003031","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

由于靶位点突变的持续进化降低了除草剂与靶标之间的亲和力,全球范围内对 ALS 抑制性除草剂的抗药性急剧增加。我们评估了众所周知的 ALS Asp-376-Glu 靶点突变对不同咪唑啉酮类除草剂(包括咪草烟和咪草烟)的影响。温室剂量反应实验表明,携带Asp-376-Glu的生物型在施用田间推荐剂量的咪草烟后可完全控制病情,而对咪草烟则表现出高度抗性。同样,携带 Asp-376-Glu 的Ⅳ号生物型对田间推荐剂量的咪鲜胺有抗性,但对咪鲜胺无抗性。使用不同植物序列骨架异源表达的 Asp-376-Glu 突变体酶的生化抑制和动力学特征表明,Asp-376-Glu 对吡虫啉不敏感,但对咪鲜胺不敏感,这与温室研究结果相吻合。对接模拟显示,通过配体中的氧与 ALS Met200 的硫原子之间的缩醛相互作用,咪草烟仍能抑制 Asp-376-Glu 突变体酶,而咪草烟不会产生这种相互作用。这些结果解释了Asp-376-Glu突变体对咪唑啉酮类除草剂的不同敏感性,从而提供了新的信息,可用于制定管理准则,以管理受携带Asp-376-Glu突变体杂草侵扰的田块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3D structure of acetolactate synthase explains why the Asp-376-Glu point mutation does not give the same resistance level to different imidazolinone herbicides

Resistance to ALS-inhibiting herbicides has dramatically increased worldwide due to the persisting evolution of target site mutations that reduce the affinity between the herbicide and the target. We evaluated the effect of the well-known ALS Asp-376-Glu target site mutation on different imidazolinone herbicides, including imazamox and imazethapyr. Greenhouse dose response experiments indicate that the Amaranthus retroflexus biotype carrying Asp-376-Glu was fully controlled by applying the field recommended dose of imazamox, whereas it displayed high level of resistance to imazethapyr. Likewise, Sorghum halepense, carrying Asp-376-Glu showed resistance to field recommended doses of imazethapyr but not of imazamox. Biochemical inhibition and kinetic characterization of the Asp-376-Glu mutant enzyme heterologously expressed using different plant sequence backbones, indicate that the Asp-376-Glu shows high level of insensitivity to imazethapyr but not to imazamox, corroborating the greenhouse results. Docking simulations revealed that imazamox can still inhibit the Asp-376-Glu mutant enzyme through a chalcogen interaction between the oxygen of the ligand and the sulfur atom of the ALS Met200, while imazethapyr does not create such interaction. These results explain the different sensitivity of the Asp-376-Glu mutation towards imidazolinone herbicides, thus providing novel information that can be exploited for defining stewardship guidelines to manage fields infested by weeds harboring the Asp-376-Glu mutation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.00
自引率
8.50%
发文量
238
审稿时长
4.2 months
期刊介绍: Pesticide Biochemistry and Physiology publishes original scientific articles pertaining to the mode of action of plant protection agents such as insecticides, fungicides, herbicides, and similar compounds, including nonlethal pest control agents, biosynthesis of pheromones, hormones, and plant resistance agents. Manuscripts may include a biochemical, physiological, or molecular study for an understanding of comparative toxicology or selective toxicity of both target and nontarget organisms. Particular interest will be given to studies on the molecular biology of pest control, toxicology, and pesticide resistance. Research Areas Emphasized Include the Biochemistry and Physiology of: • Comparative toxicity • Mode of action • Pathophysiology • Plant growth regulators • Resistance • Other effects of pesticides on both parasites and hosts.
期刊最新文献
Factors influencing pesticide-biocontrol agent compatibility: A metadata-based review Two critical detoxification enzyme genes, NlCYP301B1 and NlGSTm2 confer pymetrozine resistance in the brown planthopper (BPH), Nilaparvata lugens Stål Editorial Board Resistance risk and mechanism of Ustilaginoidea virens to pydiflumetofen Functional analysis of dopa decarboxylase in the larval pupation and immunity of the diamondback moth, Plutella xylostella
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1