多模态电阻抗断层扫描和脑电图成像:EIT 成像中更高的颅骨电导分辨率是否能提高脑电波源定位的准确性?

Ville Rimpiläinen, Alexandra Koulouri
{"title":"多模态电阻抗断层扫描和脑电图成像:EIT 成像中更高的颅骨电导分辨率是否能提高脑电波源定位的准确性?","authors":"Ville Rimpiläinen, Alexandra Koulouri","doi":"10.1101/2024.08.05.606582","DOIUrl":null,"url":null,"abstract":"<strong>Objective</strong> Unknown conductivities of the head tissues, particularly the skull, is a major factor of uncertainty in electroencephalography (EEG) source imaging. Here, we develop a personalized skull conductivity framework aiming to improve the head models used in the EEG source imaging and to reduce localization errors.","PeriodicalId":501308,"journal":{"name":"bioRxiv - Bioengineering","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodal electrical impedance tomography and electroencephalography imaging: Does higher skull conductivity resolution in EIT imaging improve accuracy of EEG source localization?\",\"authors\":\"Ville Rimpiläinen, Alexandra Koulouri\",\"doi\":\"10.1101/2024.08.05.606582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Objective</strong> Unknown conductivities of the head tissues, particularly the skull, is a major factor of uncertainty in electroencephalography (EEG) source imaging. Here, we develop a personalized skull conductivity framework aiming to improve the head models used in the EEG source imaging and to reduce localization errors.\",\"PeriodicalId\":501308,\"journal\":{\"name\":\"bioRxiv - Bioengineering\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Bioengineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.08.05.606582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.05.606582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目标 头部组织,尤其是头骨的未知传导性是脑电图(EEG)信号源成像中的一个主要不确定因素。在此,我们开发了一个个性化头骨传导性框架,旨在改进脑电图源成像中使用的头部模型,减少定位误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multimodal electrical impedance tomography and electroencephalography imaging: Does higher skull conductivity resolution in EIT imaging improve accuracy of EEG source localization?
Objective Unknown conductivities of the head tissues, particularly the skull, is a major factor of uncertainty in electroencephalography (EEG) source imaging. Here, we develop a personalized skull conductivity framework aiming to improve the head models used in the EEG source imaging and to reduce localization errors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Single unit electrophysiology recordings and computational modeling can predict octopus arm movement PiggyBac mediated transgenesis and CRISPR/Cas9 knockout in the greater waxmoth, Galleria mellonella A microinjection protocol for the greater waxworm moth, Galleria mellonella Engineered Receptors for Soluble Cell-to-Cell Communication Synthesis and mechanical characterization of polyacrylamide (PAAm) hydrogels with different stiffnesses for large-batch cell culture applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1