Dou Jie, Zilin Xiang, Xiekang Wang, Penglin Zheng, Ram Avtar, Chen Xinyu, Gianvito Scaringi, Luo Wanqi, Ali P Yunus
{"title":"2018 年 6.6 级北海道东伊布里地震震中地区震后地形变化和植被恢复延迟","authors":"Dou Jie, Zilin Xiang, Xiekang Wang, Penglin Zheng, Ram Avtar, Chen Xinyu, Gianvito Scaringi, Luo Wanqi, Ali P Yunus","doi":"10.1177/03091333241269201","DOIUrl":null,"url":null,"abstract":"The 2018, M<jats:sub>w</jats:sub> 6.6 Hokkaido Eastern Iburi earthquake in Japan triggered over 10,000 landsliding in an area spanning about 500 km<jats:sup>2</jats:sup>, altering the local topography and leading to the accumulation of loose deposits on hillslopes and in valleys. However, a comprehensive post-seismic landslide inventory and an assessment of topographic changes are lacking, hindering a quantitative hazard assessment. Additionally, the extent of vegetation recovery in areas affected by coseismic landslides, a key indicator of post-seismic debris flow hazard, has not been evaluated. Here, we utilize high-resolution digital elevation models and multi-temporal satellite imagery to analyze topographic changes and vegetation dynamics in the earthquake’s epicentral area (seismic intensity >5.5). We observe that the event roughened the overall gentle topography of the region and made the slopes steeper. Owing to the absence of significant rainstorms and snowmelt post 2018, only a few debris remobilizations (60) and new landslides (80) have occurred in the affected region. Moreover, we noticed a slow vegetation recovery in the post-seismic phase, suggesting that the likelihood of debris flows and gully erosion remains elevated, highlighting the need for continued monitoring and assessment.","PeriodicalId":49659,"journal":{"name":"Progress in Physical Geography-Earth and Environment","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Post-seismic topographic shifts and delayed vegetation recovery in the epicentral area of the 2018 Mw 6.6 Hokkaido Eastern Iburi earthquake\",\"authors\":\"Dou Jie, Zilin Xiang, Xiekang Wang, Penglin Zheng, Ram Avtar, Chen Xinyu, Gianvito Scaringi, Luo Wanqi, Ali P Yunus\",\"doi\":\"10.1177/03091333241269201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The 2018, M<jats:sub>w</jats:sub> 6.6 Hokkaido Eastern Iburi earthquake in Japan triggered over 10,000 landsliding in an area spanning about 500 km<jats:sup>2</jats:sup>, altering the local topography and leading to the accumulation of loose deposits on hillslopes and in valleys. However, a comprehensive post-seismic landslide inventory and an assessment of topographic changes are lacking, hindering a quantitative hazard assessment. Additionally, the extent of vegetation recovery in areas affected by coseismic landslides, a key indicator of post-seismic debris flow hazard, has not been evaluated. Here, we utilize high-resolution digital elevation models and multi-temporal satellite imagery to analyze topographic changes and vegetation dynamics in the earthquake’s epicentral area (seismic intensity >5.5). We observe that the event roughened the overall gentle topography of the region and made the slopes steeper. Owing to the absence of significant rainstorms and snowmelt post 2018, only a few debris remobilizations (60) and new landslides (80) have occurred in the affected region. Moreover, we noticed a slow vegetation recovery in the post-seismic phase, suggesting that the likelihood of debris flows and gully erosion remains elevated, highlighting the need for continued monitoring and assessment.\",\"PeriodicalId\":49659,\"journal\":{\"name\":\"Progress in Physical Geography-Earth and Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Physical Geography-Earth and Environment\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1177/03091333241269201\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Physical Geography-Earth and Environment","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1177/03091333241269201","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Post-seismic topographic shifts and delayed vegetation recovery in the epicentral area of the 2018 Mw 6.6 Hokkaido Eastern Iburi earthquake
The 2018, Mw 6.6 Hokkaido Eastern Iburi earthquake in Japan triggered over 10,000 landsliding in an area spanning about 500 km2, altering the local topography and leading to the accumulation of loose deposits on hillslopes and in valleys. However, a comprehensive post-seismic landslide inventory and an assessment of topographic changes are lacking, hindering a quantitative hazard assessment. Additionally, the extent of vegetation recovery in areas affected by coseismic landslides, a key indicator of post-seismic debris flow hazard, has not been evaluated. Here, we utilize high-resolution digital elevation models and multi-temporal satellite imagery to analyze topographic changes and vegetation dynamics in the earthquake’s epicentral area (seismic intensity >5.5). We observe that the event roughened the overall gentle topography of the region and made the slopes steeper. Owing to the absence of significant rainstorms and snowmelt post 2018, only a few debris remobilizations (60) and new landslides (80) have occurred in the affected region. Moreover, we noticed a slow vegetation recovery in the post-seismic phase, suggesting that the likelihood of debris flows and gully erosion remains elevated, highlighting the need for continued monitoring and assessment.
期刊介绍:
Progress in Physical Geography is a peer-reviewed, international journal, encompassing an interdisciplinary approach incorporating the latest developments and debates within Physical Geography and interrelated fields across the Earth, Biological and Ecological System Sciences.