{"title":"通过两种硅化物的协同效应实现具有出色循环寿命的硅基纳米复合材料锂离子电池阳极","authors":"Yasuhiro Domi, Hiroyuki Usui, Takumi Okasaka, Kei Nishikawa and Hiroki Sakaguchi","doi":"10.1149/1945-7111/ad69c6","DOIUrl":null,"url":null,"abstract":"Nanocomposite electrodes comprising LaSi2 and Si exhibit satisfactory charge–discharge cycling performances but their capacity is degraded after repeated cycles. A metallographic structure, in which the Si phase was finely dispersed in the LaSi2 matrix phase, was formed before cycling. The elastic LaSi2 relieved Si-generated stress and suppressed electrode disintegration. Contrarily, the LaSi2 phase in the metallographic structure was surrounded by the Si matrix phase after cycling. The positional relationship between the two phases was reversed, and LaSi2 could not relieve the stress. For a nanocomposite electrode containing CrSi2, which exhibits stiffness to withstand the Si-generated stress, the structural changes were suppressed after cycling, resulting in good cycling stability. Here, we considered that the addition of stiff silicides as a third phase to the LaSi2/Si composite could improve the cycle life. Thus, this study prepared nanocomposite electrodes containing elastic LaSi2, stiff MSi2 (where M = Cr, Mo, Nb, Ta, Ti, or W), and elemental Si and investigated their electrochemical performances. Reaction behaviors, such as the metallographic structure, electrode thickness, and phase transition, were also clarified. The LaSi2/NbSi2/Si electrode exhibited the best cycle life without changes in its metallographic structure owing to the synergistic effect of stiff and elastic silicides.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":"41 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Silicon-Based Nanocomposite Anodes with Excellent Cycle Life for Lithium-Ion Batteries Achieved by the Synergistic Effect of Two Silicides\",\"authors\":\"Yasuhiro Domi, Hiroyuki Usui, Takumi Okasaka, Kei Nishikawa and Hiroki Sakaguchi\",\"doi\":\"10.1149/1945-7111/ad69c6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanocomposite electrodes comprising LaSi2 and Si exhibit satisfactory charge–discharge cycling performances but their capacity is degraded after repeated cycles. A metallographic structure, in which the Si phase was finely dispersed in the LaSi2 matrix phase, was formed before cycling. The elastic LaSi2 relieved Si-generated stress and suppressed electrode disintegration. Contrarily, the LaSi2 phase in the metallographic structure was surrounded by the Si matrix phase after cycling. The positional relationship between the two phases was reversed, and LaSi2 could not relieve the stress. For a nanocomposite electrode containing CrSi2, which exhibits stiffness to withstand the Si-generated stress, the structural changes were suppressed after cycling, resulting in good cycling stability. Here, we considered that the addition of stiff silicides as a third phase to the LaSi2/Si composite could improve the cycle life. Thus, this study prepared nanocomposite electrodes containing elastic LaSi2, stiff MSi2 (where M = Cr, Mo, Nb, Ta, Ti, or W), and elemental Si and investigated their electrochemical performances. Reaction behaviors, such as the metallographic structure, electrode thickness, and phase transition, were also clarified. The LaSi2/NbSi2/Si electrode exhibited the best cycle life without changes in its metallographic structure owing to the synergistic effect of stiff and elastic silicides.\",\"PeriodicalId\":17364,\"journal\":{\"name\":\"Journal of The Electrochemical Society\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Electrochemical Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1149/1945-7111/ad69c6\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Electrochemical Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1149/1945-7111/ad69c6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Silicon-Based Nanocomposite Anodes with Excellent Cycle Life for Lithium-Ion Batteries Achieved by the Synergistic Effect of Two Silicides
Nanocomposite electrodes comprising LaSi2 and Si exhibit satisfactory charge–discharge cycling performances but their capacity is degraded after repeated cycles. A metallographic structure, in which the Si phase was finely dispersed in the LaSi2 matrix phase, was formed before cycling. The elastic LaSi2 relieved Si-generated stress and suppressed electrode disintegration. Contrarily, the LaSi2 phase in the metallographic structure was surrounded by the Si matrix phase after cycling. The positional relationship between the two phases was reversed, and LaSi2 could not relieve the stress. For a nanocomposite electrode containing CrSi2, which exhibits stiffness to withstand the Si-generated stress, the structural changes were suppressed after cycling, resulting in good cycling stability. Here, we considered that the addition of stiff silicides as a third phase to the LaSi2/Si composite could improve the cycle life. Thus, this study prepared nanocomposite electrodes containing elastic LaSi2, stiff MSi2 (where M = Cr, Mo, Nb, Ta, Ti, or W), and elemental Si and investigated their electrochemical performances. Reaction behaviors, such as the metallographic structure, electrode thickness, and phase transition, were also clarified. The LaSi2/NbSi2/Si electrode exhibited the best cycle life without changes in its metallographic structure owing to the synergistic effect of stiff and elastic silicides.
期刊介绍:
The Journal of The Electrochemical Society (JES) is the leader in the field of solid-state and electrochemical science and technology. This peer-reviewed journal publishes an average of 450 pages of 70 articles each month. Articles are posted online, with a monthly paper edition following electronic publication. The ECS membership benefits package includes access to the electronic edition of this journal.