梯度流的能量变异神经网络离散化

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-08-05 DOI:10.1137/22m1529427
Ziqing Hu, Chun Liu, Yiwei Wang, Zhiliang Xu
{"title":"梯度流的能量变异神经网络离散化","authors":"Ziqing Hu, Chun Liu, Yiwei Wang, Zhiliang Xu","doi":"10.1137/22m1529427","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2528-A2556, August 2024. <br/> Abstract. We present a structure-preserving Eulerian algorithm for solving [math]-gradient flows and a structure-preserving Lagrangian algorithm for solving generalized diffusions. Both algorithms employ neural networks as tools for spatial discretization. Unlike most existing methods that construct numerical discretizations based on the strong or weak form of the underlying PDE, the proposed schemes are constructed based on the energy-dissipation law directly. This guarantees the monotonic decay of the system’s free energy, which avoids unphysical states of solutions and is crucial for the long-term stability of numerical computations. To address challenges arising from nonlinear neural network discretization, we perform temporal discretizations on these variational systems before spatial discretizations. This approach is computationally memory-efficient when implementing neural network-based algorithms. The proposed neural network-based schemes are mesh-free, allowing us to solve gradient flows in high dimensions. Various numerical experiments are presented to demonstrate the accuracy and energy stability of the proposed numerical schemes.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energetic Variational Neural Network Discretizations of Gradient Flows\",\"authors\":\"Ziqing Hu, Chun Liu, Yiwei Wang, Zhiliang Xu\",\"doi\":\"10.1137/22m1529427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2528-A2556, August 2024. <br/> Abstract. We present a structure-preserving Eulerian algorithm for solving [math]-gradient flows and a structure-preserving Lagrangian algorithm for solving generalized diffusions. Both algorithms employ neural networks as tools for spatial discretization. Unlike most existing methods that construct numerical discretizations based on the strong or weak form of the underlying PDE, the proposed schemes are constructed based on the energy-dissipation law directly. This guarantees the monotonic decay of the system’s free energy, which avoids unphysical states of solutions and is crucial for the long-term stability of numerical computations. To address challenges arising from nonlinear neural network discretization, we perform temporal discretizations on these variational systems before spatial discretizations. This approach is computationally memory-efficient when implementing neural network-based algorithms. The proposed neural network-based schemes are mesh-free, allowing us to solve gradient flows in high dimensions. Various numerical experiments are presented to demonstrate the accuracy and energy stability of the proposed numerical schemes.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1529427\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1529427","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 科学计算期刊》,第 46 卷第 4 期,第 A2528-A2556 页,2024 年 8 月。 摘要。我们提出了一种求解[数学]梯度流的结构保留欧拉算法和一种求解广义扩散的结构保留拉格朗日算法。这两种算法都采用神经网络作为空间离散化工具。与大多数根据底层 PDE 的强或弱形式构建数值离散的现有方法不同,所提出的方案是直接根据能量消耗定律构建的。这保证了系统自由能的单调衰减,避免了解的非物理状态,对数值计算的长期稳定性至关重要。为了应对非线性神经网络离散化带来的挑战,我们在空间离散化之前对这些变分系统进行了时间离散化。在实施基于神经网络的算法时,这种方法具有计算记忆效率。所提出的基于神经网络的方案是无网格的,使我们能够解决高维度的梯度流问题。各种数值实验证明了所提数值方案的准确性和能量稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energetic Variational Neural Network Discretizations of Gradient Flows
SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2528-A2556, August 2024.
Abstract. We present a structure-preserving Eulerian algorithm for solving [math]-gradient flows and a structure-preserving Lagrangian algorithm for solving generalized diffusions. Both algorithms employ neural networks as tools for spatial discretization. Unlike most existing methods that construct numerical discretizations based on the strong or weak form of the underlying PDE, the proposed schemes are constructed based on the energy-dissipation law directly. This guarantees the monotonic decay of the system’s free energy, which avoids unphysical states of solutions and is crucial for the long-term stability of numerical computations. To address challenges arising from nonlinear neural network discretization, we perform temporal discretizations on these variational systems before spatial discretizations. This approach is computationally memory-efficient when implementing neural network-based algorithms. The proposed neural network-based schemes are mesh-free, allowing us to solve gradient flows in high dimensions. Various numerical experiments are presented to demonstrate the accuracy and energy stability of the proposed numerical schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1