He Zhao, Rossella Greco, Rafal Sliz, Olli Pitkänen, Krisztian Kordas, Satu Ojala
{"title":"用于增强可见光驱动的光催化氢气进化的界面连接调制非晶硫化钼/卤化铋过氧化物异质结","authors":"He Zhao, Rossella Greco, Rafal Sliz, Olli Pitkänen, Krisztian Kordas, Satu Ojala","doi":"10.1016/j.apcatb.2024.124454","DOIUrl":null,"url":null,"abstract":"Photocatalytic hydrogen evolution is a promising approach for direct solar-to-fuel conversion. Although significant research efforts have been put on the development of lead-free metal halide perovskites to reach excellent optoelectronic properties, their rational design for efficient heterojunction photocatalytic systems still poses challenges. Here, we report a new strategy to tailor the interface of hybrid tri(dimethylammonium) hexaiodobismuthate (DMABiI) and amorphous molybdenum sulfide (a-MoS) heterojunctions. Specifically, a-MoS was prepared with abundant apical S or bridging S ligands to allow coupling with DMABiI via an interfacial Mo–S–Bi linkage. The as-obtained heterostructures were found to show an improved visible-light-driven photocatalytic hydrogen evolution in hydroiodic acid splitting under mild conditions reaching a superior hydrogen evolution rate of around 750 µmol g h and an apparent quantum efficiency (AQE) of 13.0 % at 420 nm. The high activity was kept after a long-term performance test for 3 days.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interfacial linkage modulated amorphous molybdenum sulfide/bismuth halide perovskite heterojunction for enhanced visible-light-driven photocatalytic hydrogen evolution\",\"authors\":\"He Zhao, Rossella Greco, Rafal Sliz, Olli Pitkänen, Krisztian Kordas, Satu Ojala\",\"doi\":\"10.1016/j.apcatb.2024.124454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photocatalytic hydrogen evolution is a promising approach for direct solar-to-fuel conversion. Although significant research efforts have been put on the development of lead-free metal halide perovskites to reach excellent optoelectronic properties, their rational design for efficient heterojunction photocatalytic systems still poses challenges. Here, we report a new strategy to tailor the interface of hybrid tri(dimethylammonium) hexaiodobismuthate (DMABiI) and amorphous molybdenum sulfide (a-MoS) heterojunctions. Specifically, a-MoS was prepared with abundant apical S or bridging S ligands to allow coupling with DMABiI via an interfacial Mo–S–Bi linkage. The as-obtained heterostructures were found to show an improved visible-light-driven photocatalytic hydrogen evolution in hydroiodic acid splitting under mild conditions reaching a superior hydrogen evolution rate of around 750 µmol g h and an apparent quantum efficiency (AQE) of 13.0 % at 420 nm. The high activity was kept after a long-term performance test for 3 days.\",\"PeriodicalId\":516528,\"journal\":{\"name\":\"Applied Catalysis B: Environment and Energy\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Catalysis B: Environment and Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.apcatb.2024.124454\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environment and Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.apcatb.2024.124454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
光催化氢进化是太阳能直接转化为燃料的一种前景广阔的方法。尽管人们在开发无铅金属卤化物包覆晶石以获得优异的光电特性方面付出了巨大的研究努力,但合理设计它们用于高效异质结光催化系统仍然是一项挑战。在此,我们报告了一种定制混合三(二甲基铵)六碘铋酸盐(DMABiI)和无定形硫化钼(a-MoS)异质结界面的新策略。具体来说,制备的 a-MoS 具有丰富的顶端 S 或桥接 S 配体,可以通过界面 Mo-S-Bi 连接与 DMABiI 相耦合。研究发现,所获得的异质结构在温和条件下的氢碘酸分馏中显示出更好的可见光驱动光催化氢气进化能力,在 420 纳米波长下,氢气进化率达到约 750 µmol g h,表观量子效率 (AQE) 为 13.0%。经过 3 天的长期性能测试后,这种高活性得以保持。
Photocatalytic hydrogen evolution is a promising approach for direct solar-to-fuel conversion. Although significant research efforts have been put on the development of lead-free metal halide perovskites to reach excellent optoelectronic properties, their rational design for efficient heterojunction photocatalytic systems still poses challenges. Here, we report a new strategy to tailor the interface of hybrid tri(dimethylammonium) hexaiodobismuthate (DMABiI) and amorphous molybdenum sulfide (a-MoS) heterojunctions. Specifically, a-MoS was prepared with abundant apical S or bridging S ligands to allow coupling with DMABiI via an interfacial Mo–S–Bi linkage. The as-obtained heterostructures were found to show an improved visible-light-driven photocatalytic hydrogen evolution in hydroiodic acid splitting under mild conditions reaching a superior hydrogen evolution rate of around 750 µmol g h and an apparent quantum efficiency (AQE) of 13.0 % at 420 nm. The high activity was kept after a long-term performance test for 3 days.