空间分离条件下基于磁电效应的非磁性介质间隙距离传感

IF 3.1 3区 物理与天体物理 Q2 PHYSICS, APPLIED Journal of Physics D: Applied Physics Pub Date : 2024-08-08 DOI:10.1088/1361-6463/ad6a21
Xiao Zhang, Tian Xia, Yahui Zhang, Yikun Yang and Bintang Yang
{"title":"空间分离条件下基于磁电效应的非磁性介质间隙距离传感","authors":"Xiao Zhang, Tian Xia, Yahui Zhang, Yikun Yang and Bintang Yang","doi":"10.1088/1361-6463/ad6a21","DOIUrl":null,"url":null,"abstract":"This paper presents a novel non-contact spatial gap distance sensing (GDS) method that can provide distance information in spatial separation conditions. In many applications, such as enclosed environments, it could not provide the desired measurement of gap distance of internal non-magnetic medium due to the constraints of physical barriers and poor accessibility. Therefore, a non-invasive sensing system is designed to measure spatial gap distance for non-magnetic medium. The developed sensor system consists of a pair of heteropolar permanent magnets (PMs), a non-magnetic medium, a magnetostrictive-piezoelectric composite unit and an external space, which has the function of spatial separation measurement. By exploiting the magnetoelectric effect, the magneto-machine-electric conversion is achieved by sensing the spatial magnetic field generated by the heteropolar PMs. The coupling modeling, analysis and calibration of sensing system are conducted, and the system prototype is designed and manufactured. Additionally, the performances of the GDS are experimentally validated. Static gap distance (plate thickness) measurements of the plate and variable gap distance (instant water height) measurements of water are performed, and resolution, vibration, and drift tests are carried out. The results show the accuracy and stability of non-contact spatial gap distance detection for non-magnetic medium, highlighting its potential in various applications.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"18 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gap distance sensing for non-magnetic medium based on magnetoelectric effect under spatial separation condition\",\"authors\":\"Xiao Zhang, Tian Xia, Yahui Zhang, Yikun Yang and Bintang Yang\",\"doi\":\"10.1088/1361-6463/ad6a21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel non-contact spatial gap distance sensing (GDS) method that can provide distance information in spatial separation conditions. In many applications, such as enclosed environments, it could not provide the desired measurement of gap distance of internal non-magnetic medium due to the constraints of physical barriers and poor accessibility. Therefore, a non-invasive sensing system is designed to measure spatial gap distance for non-magnetic medium. The developed sensor system consists of a pair of heteropolar permanent magnets (PMs), a non-magnetic medium, a magnetostrictive-piezoelectric composite unit and an external space, which has the function of spatial separation measurement. By exploiting the magnetoelectric effect, the magneto-machine-electric conversion is achieved by sensing the spatial magnetic field generated by the heteropolar PMs. The coupling modeling, analysis and calibration of sensing system are conducted, and the system prototype is designed and manufactured. Additionally, the performances of the GDS are experimentally validated. Static gap distance (plate thickness) measurements of the plate and variable gap distance (instant water height) measurements of water are performed, and resolution, vibration, and drift tests are carried out. The results show the accuracy and stability of non-contact spatial gap distance detection for non-magnetic medium, highlighting its potential in various applications.\",\"PeriodicalId\":16789,\"journal\":{\"name\":\"Journal of Physics D: Applied Physics\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics D: Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6463/ad6a21\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics D: Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6463/ad6a21","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新颖的非接触式空间间隙距离传感(GDS)方法,可在空间分离条件下提供距离信息。在许多应用中,例如在封闭环境中,由于物理障碍和可及性差的限制,无法提供所需的内部非磁性介质间隙距离测量。因此,设计了一种非侵入式传感系统来测量非磁性介质的空间间隙距离。所开发的传感系统由一对异极永磁体(PM)、非磁性介质、磁致伸缩压电复合单元和一个具有空间隔离测量功能的外部空间组成。利用磁电效应,通过感应异极永磁体产生的空间磁场,实现磁-机-电转换。对传感系统进行了耦合建模、分析和校准,并设计和制造了系统原型。此外,还通过实验验证了 GDS 的性能。进行了板的静态间隙距离(板厚)测量和水的可变间隙距离(瞬时水高)测量,并进行了分辨率、振动和漂移测试。结果表明,非接触式空间间隙距离检测在非磁性介质中的准确性和稳定性,凸显了其在各种应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gap distance sensing for non-magnetic medium based on magnetoelectric effect under spatial separation condition
This paper presents a novel non-contact spatial gap distance sensing (GDS) method that can provide distance information in spatial separation conditions. In many applications, such as enclosed environments, it could not provide the desired measurement of gap distance of internal non-magnetic medium due to the constraints of physical barriers and poor accessibility. Therefore, a non-invasive sensing system is designed to measure spatial gap distance for non-magnetic medium. The developed sensor system consists of a pair of heteropolar permanent magnets (PMs), a non-magnetic medium, a magnetostrictive-piezoelectric composite unit and an external space, which has the function of spatial separation measurement. By exploiting the magnetoelectric effect, the magneto-machine-electric conversion is achieved by sensing the spatial magnetic field generated by the heteropolar PMs. The coupling modeling, analysis and calibration of sensing system are conducted, and the system prototype is designed and manufactured. Additionally, the performances of the GDS are experimentally validated. Static gap distance (plate thickness) measurements of the plate and variable gap distance (instant water height) measurements of water are performed, and resolution, vibration, and drift tests are carried out. The results show the accuracy and stability of non-contact spatial gap distance detection for non-magnetic medium, highlighting its potential in various applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics D: Applied Physics
Journal of Physics D: Applied Physics 物理-物理:应用
CiteScore
6.80
自引率
8.80%
发文量
835
审稿时长
2.1 months
期刊介绍: This journal is concerned with all aspects of applied physics research, from biophysics, magnetism, plasmas and semiconductors to the structure and properties of matter.
期刊最新文献
Recent progresses and applications on chiroptical metamaterials: a review Oxygen vacancies kinetics in TaO 2 − ... Numerical simulations of a low-pressure electrodeless ion source intended for air-breathing electric propulsion Electrical surface breakdown characteristics of micro- and nano-Al2O3 particle co-doped epoxy composites Wide-angle reflection control with a reflective digital coding metasurface for 5G communication systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1