Longxin Wan, Xiaofei Xu, Kun Duan and Junming Zhao
{"title":"宽带光学透明微波吸收器,由旋转对称的数字间元表面和单个空气隔板组成","authors":"Longxin Wan, Xiaofei Xu, Kun Duan and Junming Zhao","doi":"10.1088/1361-6463/ad6a24","DOIUrl":null,"url":null,"abstract":"A broadband optically transparent metasurface microwave absorber (MMA) is designed and experimentally studied. The MMA is made of two indium tin oxide (ITO) resistive films deposited on two transparent polyethylene terephthalate substrates respectively, between which is sandwiched a single air spacer. The top ITO resistive film is etched with periodic interdigital metasurface patterns in rotational symmetry, while the bottom ITO resistive film is an integrated sheet with a low resistance working as the backplane. By carefully optimizing the functional interdigital metasurface structures in a numerical solver, a desirable 4-octave broadband MMA is achieved. The absorbing bandwidth is 4.53–18.71 GHz (122.03%) in the numerical predictions for the perpendicular incidence, in which the absorptivity is greater than 90%. Its total thickness is only 5.8 mm or 0.088λL, where λL is the wavelength (66.23 mm) at the lowest 4.53 GHz. The absorber is validated in experiments. Results are observed in good agreement with the simulated ones. The interdigital MMA is polarization-insensitive and able to operate for wide-angle incidences up to 45°. These properties are demonstrated in both simulations and experiments.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"56 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Broadband optically transparent microwave absorber made of interdigital metasurfaces in rotational symmetry with a single air spacer\",\"authors\":\"Longxin Wan, Xiaofei Xu, Kun Duan and Junming Zhao\",\"doi\":\"10.1088/1361-6463/ad6a24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A broadband optically transparent metasurface microwave absorber (MMA) is designed and experimentally studied. The MMA is made of two indium tin oxide (ITO) resistive films deposited on two transparent polyethylene terephthalate substrates respectively, between which is sandwiched a single air spacer. The top ITO resistive film is etched with periodic interdigital metasurface patterns in rotational symmetry, while the bottom ITO resistive film is an integrated sheet with a low resistance working as the backplane. By carefully optimizing the functional interdigital metasurface structures in a numerical solver, a desirable 4-octave broadband MMA is achieved. The absorbing bandwidth is 4.53–18.71 GHz (122.03%) in the numerical predictions for the perpendicular incidence, in which the absorptivity is greater than 90%. Its total thickness is only 5.8 mm or 0.088λL, where λL is the wavelength (66.23 mm) at the lowest 4.53 GHz. The absorber is validated in experiments. Results are observed in good agreement with the simulated ones. The interdigital MMA is polarization-insensitive and able to operate for wide-angle incidences up to 45°. These properties are demonstrated in both simulations and experiments.\",\"PeriodicalId\":16789,\"journal\":{\"name\":\"Journal of Physics D: Applied Physics\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics D: Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6463/ad6a24\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics D: Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6463/ad6a24","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Broadband optically transparent microwave absorber made of interdigital metasurfaces in rotational symmetry with a single air spacer
A broadband optically transparent metasurface microwave absorber (MMA) is designed and experimentally studied. The MMA is made of two indium tin oxide (ITO) resistive films deposited on two transparent polyethylene terephthalate substrates respectively, between which is sandwiched a single air spacer. The top ITO resistive film is etched with periodic interdigital metasurface patterns in rotational symmetry, while the bottom ITO resistive film is an integrated sheet with a low resistance working as the backplane. By carefully optimizing the functional interdigital metasurface structures in a numerical solver, a desirable 4-octave broadband MMA is achieved. The absorbing bandwidth is 4.53–18.71 GHz (122.03%) in the numerical predictions for the perpendicular incidence, in which the absorptivity is greater than 90%. Its total thickness is only 5.8 mm or 0.088λL, where λL is the wavelength (66.23 mm) at the lowest 4.53 GHz. The absorber is validated in experiments. Results are observed in good agreement with the simulated ones. The interdigital MMA is polarization-insensitive and able to operate for wide-angle incidences up to 45°. These properties are demonstrated in both simulations and experiments.
期刊介绍:
This journal is concerned with all aspects of applied physics research, from biophysics, magnetism, plasmas and semiconductors to the structure and properties of matter.