Na Xiao, Vishal Khandelwal, Saravanan Yuvaraja, Dhanu Chettri, Genesh Mainali, Zhiyuan Liu, Mohamed Ben Hassine, Xiao Tang and Xiaohang Li
{"title":"具有高场效应迁移率(128.3 cm2 V-1 s-1)和低热预算(200 °C )的钝化氧化铟薄膜晶体管","authors":"Na Xiao, Vishal Khandelwal, Saravanan Yuvaraja, Dhanu Chettri, Genesh Mainali, Zhiyuan Liu, Mohamed Ben Hassine, Xiao Tang and Xiaohang Li","doi":"10.1088/1361-6463/ad6a23","DOIUrl":null,"url":null,"abstract":"Here, we demonstrate a high-mobility indium oxide (In2O3) thin-film transistor (TFT) with a sputtered alumina (Al2O3) passivation layer (PVL) with a low thermal budget (200 °C). The sputtering process of the Al2O3 PVL plays a positive role in improving the field-effect mobility (µFE) and current on/off ratio (ION/IOFF) performance of the In2O3 TFTs. However, these enhancements are limited due to the high density of intrinsic trap defects in the In2O3 channels, as reflected in their large hysteresis and poor bias stability. Treating the In2O3 channel with oxygen (O2) plasma prior to sputtering the Al2O3 PVL results in notable improvements. Specifically, a high µFE of 128.3 cm2V−1 s−1, a high ION/IOFF over 106 at VDS of 0.1 V, a small hysteresis of 0.03 V, and a negligible threshold voltage shift under negative bias stress are achieved in the passivated In2O3 TFT (with O2 plasma pretreatment), representing a significant improvement compared to the passivated In2O3 TFT (without O2 plasma pretreatment) and the unpassivated In2O3 TFT. The remarkable reduction of intrinsic trap defects in the passivated In2O3 TFT compensated by O2 plasma is the primary mechanism underlying the improvement in µFE and bias stability, as validated by x-ray photoelectron spectra, hysteresis analysis, and temperature-stress electrical characterizations. Plasma treatment effectively compensates for intrinsic trap defects in oxide semiconductor (OS) channels, when combined with sputter passivation, resulting in a significant enhancement of the overall performance of OS TFTs under low thermal budgets. This approach offers valuable insights into advancing OS TFTs with satisfactory driving capability and wide applicability.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"25 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Passivated indium oxide thin-film transistors with high field-effect mobility (128.3 cm2 V−1 s−1) and low thermal budget (200 °C)\",\"authors\":\"Na Xiao, Vishal Khandelwal, Saravanan Yuvaraja, Dhanu Chettri, Genesh Mainali, Zhiyuan Liu, Mohamed Ben Hassine, Xiao Tang and Xiaohang Li\",\"doi\":\"10.1088/1361-6463/ad6a23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here, we demonstrate a high-mobility indium oxide (In2O3) thin-film transistor (TFT) with a sputtered alumina (Al2O3) passivation layer (PVL) with a low thermal budget (200 °C). The sputtering process of the Al2O3 PVL plays a positive role in improving the field-effect mobility (µFE) and current on/off ratio (ION/IOFF) performance of the In2O3 TFTs. However, these enhancements are limited due to the high density of intrinsic trap defects in the In2O3 channels, as reflected in their large hysteresis and poor bias stability. Treating the In2O3 channel with oxygen (O2) plasma prior to sputtering the Al2O3 PVL results in notable improvements. Specifically, a high µFE of 128.3 cm2V−1 s−1, a high ION/IOFF over 106 at VDS of 0.1 V, a small hysteresis of 0.03 V, and a negligible threshold voltage shift under negative bias stress are achieved in the passivated In2O3 TFT (with O2 plasma pretreatment), representing a significant improvement compared to the passivated In2O3 TFT (without O2 plasma pretreatment) and the unpassivated In2O3 TFT. The remarkable reduction of intrinsic trap defects in the passivated In2O3 TFT compensated by O2 plasma is the primary mechanism underlying the improvement in µFE and bias stability, as validated by x-ray photoelectron spectra, hysteresis analysis, and temperature-stress electrical characterizations. Plasma treatment effectively compensates for intrinsic trap defects in oxide semiconductor (OS) channels, when combined with sputter passivation, resulting in a significant enhancement of the overall performance of OS TFTs under low thermal budgets. This approach offers valuable insights into advancing OS TFTs with satisfactory driving capability and wide applicability.\",\"PeriodicalId\":16789,\"journal\":{\"name\":\"Journal of Physics D: Applied Physics\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics D: Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6463/ad6a23\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics D: Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6463/ad6a23","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Passivated indium oxide thin-film transistors with high field-effect mobility (128.3 cm2 V−1 s−1) and low thermal budget (200 °C)
Here, we demonstrate a high-mobility indium oxide (In2O3) thin-film transistor (TFT) with a sputtered alumina (Al2O3) passivation layer (PVL) with a low thermal budget (200 °C). The sputtering process of the Al2O3 PVL plays a positive role in improving the field-effect mobility (µFE) and current on/off ratio (ION/IOFF) performance of the In2O3 TFTs. However, these enhancements are limited due to the high density of intrinsic trap defects in the In2O3 channels, as reflected in their large hysteresis and poor bias stability. Treating the In2O3 channel with oxygen (O2) plasma prior to sputtering the Al2O3 PVL results in notable improvements. Specifically, a high µFE of 128.3 cm2V−1 s−1, a high ION/IOFF over 106 at VDS of 0.1 V, a small hysteresis of 0.03 V, and a negligible threshold voltage shift under negative bias stress are achieved in the passivated In2O3 TFT (with O2 plasma pretreatment), representing a significant improvement compared to the passivated In2O3 TFT (without O2 plasma pretreatment) and the unpassivated In2O3 TFT. The remarkable reduction of intrinsic trap defects in the passivated In2O3 TFT compensated by O2 plasma is the primary mechanism underlying the improvement in µFE and bias stability, as validated by x-ray photoelectron spectra, hysteresis analysis, and temperature-stress electrical characterizations. Plasma treatment effectively compensates for intrinsic trap defects in oxide semiconductor (OS) channels, when combined with sputter passivation, resulting in a significant enhancement of the overall performance of OS TFTs under low thermal budgets. This approach offers valuable insights into advancing OS TFTs with satisfactory driving capability and wide applicability.
期刊介绍:
This journal is concerned with all aspects of applied physics research, from biophysics, magnetism, plasmas and semiconductors to the structure and properties of matter.