SPINEX-Optimization:基于相似性的预测与可解释邻域探索,适用于单一、多重和多目标优化

MZ Naser, Ahmed Z Naser
{"title":"SPINEX-Optimization:基于相似性的预测与可解释邻域探索,适用于单一、多重和多目标优化","authors":"MZ Naser, Ahmed Z Naser","doi":"arxiv-2408.02155","DOIUrl":null,"url":null,"abstract":"This article introduces an expansion within SPINEX (Similarity-based\nPredictions with Explainable Neighbors Exploration) suite, now extended to\nsingle, multiple, and many objective optimization problems. The newly developed\nSPINEX-Optimization algorithm incorporates a nuanced approach to optimization\nin low and high dimensions by accounting for similarity across various\nsolutions. We conducted extensive benchmarking tests comparing\nSPINEX-Optimization against ten single and eight multi/many optimization\nalgorithms over 55 mathematical benchmarking functions and realistic scenarios.\nThen, we evaluated the performance of the proposed algorithm in terms of\nscalability and computational efficiency across low and high dimensions, number\nof objectives, and population sizes. The results indicate that\nSPINEX-Optimization consistently outperforms most algorithms and excels in\nmanaging complex scenarios, especially in high dimensions. The algorithm's\ncapabilities in explainability, Pareto efficiency, and moderate complexity are\nhighlighted through in-depth experiments and visualization methods.","PeriodicalId":501172,"journal":{"name":"arXiv - STAT - Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SPINEX-Optimization: Similarity-based Predictions with Explainable Neighbors Exploration for Single, Multiple, and Many Objectives Optimization\",\"authors\":\"MZ Naser, Ahmed Z Naser\",\"doi\":\"arxiv-2408.02155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article introduces an expansion within SPINEX (Similarity-based\\nPredictions with Explainable Neighbors Exploration) suite, now extended to\\nsingle, multiple, and many objective optimization problems. The newly developed\\nSPINEX-Optimization algorithm incorporates a nuanced approach to optimization\\nin low and high dimensions by accounting for similarity across various\\nsolutions. We conducted extensive benchmarking tests comparing\\nSPINEX-Optimization against ten single and eight multi/many optimization\\nalgorithms over 55 mathematical benchmarking functions and realistic scenarios.\\nThen, we evaluated the performance of the proposed algorithm in terms of\\nscalability and computational efficiency across low and high dimensions, number\\nof objectives, and population sizes. The results indicate that\\nSPINEX-Optimization consistently outperforms most algorithms and excels in\\nmanaging complex scenarios, especially in high dimensions. The algorithm's\\ncapabilities in explainability, Pareto efficiency, and moderate complexity are\\nhighlighted through in-depth experiments and visualization methods.\",\"PeriodicalId\":501172,\"journal\":{\"name\":\"arXiv - STAT - Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.02155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了 SPINEX(基于相似性预测与可解释邻域探索)套件的扩展,现已扩展到单目标、多目标和多目标优化问题。新开发的SPINEX-Optimization算法通过考虑各种解决方案之间的相似性,在低维度和高维度上采用了一种细致入微的优化方法。我们进行了广泛的基准测试,在55个数学基准函数和现实场景中将SPINEX-Optimization与10个单一优化算法和8个多/多优化算法进行了比较。然后,我们从低维和高维、目标数量和群体规模的可扩展性和计算效率方面评估了所提算法的性能。结果表明,SPINEX-Optimization 始终优于大多数算法,在管理复杂场景方面表现出色,尤其是在高维场景中。通过深入的实验和可视化方法,该算法在可解释性、帕累托效率和适度复杂性方面的优势得到了凸显。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SPINEX-Optimization: Similarity-based Predictions with Explainable Neighbors Exploration for Single, Multiple, and Many Objectives Optimization
This article introduces an expansion within SPINEX (Similarity-based Predictions with Explainable Neighbors Exploration) suite, now extended to single, multiple, and many objective optimization problems. The newly developed SPINEX-Optimization algorithm incorporates a nuanced approach to optimization in low and high dimensions by accounting for similarity across various solutions. We conducted extensive benchmarking tests comparing SPINEX-Optimization against ten single and eight multi/many optimization algorithms over 55 mathematical benchmarking functions and realistic scenarios. Then, we evaluated the performance of the proposed algorithm in terms of scalability and computational efficiency across low and high dimensions, number of objectives, and population sizes. The results indicate that SPINEX-Optimization consistently outperforms most algorithms and excels in managing complex scenarios, especially in high dimensions. The algorithm's capabilities in explainability, Pareto efficiency, and moderate complexity are highlighted through in-depth experiments and visualization methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bayesian estimation of the number of significant principal components for cultural data Optimal Visual Search with Highly Heuristic Decision Rules Who's the GOAT? Sports Rankings and Data-Driven Random Walks on the Symmetric Group Conformity assessment of processes and lots in the framework of JCGM 106:2012 Equity considerations in COVID-19 vaccine allocation modelling: a literature review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1