Aliakbar Karimipour , Mohamad Shahgholi , Ali Attaeyan , PHH Viet , Saeed A. Asiri , Khaled M. Alfawaz , Ageel F. Alogla
{"title":"利用分子动力学模拟研究初始温度对磷酸三钙/壳聚糖/二氧化硅气凝胶纳米复合材料机械强度的影响","authors":"Aliakbar Karimipour , Mohamad Shahgholi , Ali Attaeyan , PHH Viet , Saeed A. Asiri , Khaled M. Alfawaz , Ageel F. Alogla","doi":"10.1016/j.jtice.2024.105682","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Chitosan is an organic polymer derived from chitin, showcasing commendable biocompatibility and biodegradability, while tricalcium phosphate emerges as an active ceramic with proven biocompatibility and superior compatibility with bone tissue. This composite material, endowed with a unique amalgamation of attributes including biocompatibility, porosity, and mechanical strength, proves highly applicable in diverse fields such as tissue engineering, drug delivery systems, wound repair, and as scaffolds for cell proliferation in regenerative medicine.</p></div><div><h3>Methods</h3><p>The focal point of this study is an exploration of the nuanced interplay between the mechanical properties of silica aerogel/chitosan tricalcium phosphate nanocomposites with increasing initial temperature. Employing molecular dynamics (MD) simulation, the research aims to unveil the temperature-induced variations in the critical properties.</p></div><div><h3>Significant Findings</h3><p>The results reveal that the ultimate strength and Young's modulus values are determined to converge to 772.28 MPa and 62.291 GPa, at 297 K. As the initial temperature escalates from 300 to 350 K, the US decreases from 72.28 to 714.47 MPa. The decrease in US could be due to higher temperatures, the increased thermal energy can lead to greater atomic vibrations within the material, which can promote easier dislocation movement and result in reduced resistance to deformation. The results reveal that as temperature increases to 320 K, YM increases to 67.134, and with further increase in temperature, YM decreases to 62.865 GPa</p></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"164 ","pages":"Article 105682"},"PeriodicalIF":5.5000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of initial temperature on the mechanical strength of tricalcium phosphate/Chitosan/Silica aerogels nanocomposites using molecular dynamics simulation\",\"authors\":\"Aliakbar Karimipour , Mohamad Shahgholi , Ali Attaeyan , PHH Viet , Saeed A. Asiri , Khaled M. Alfawaz , Ageel F. Alogla\",\"doi\":\"10.1016/j.jtice.2024.105682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Chitosan is an organic polymer derived from chitin, showcasing commendable biocompatibility and biodegradability, while tricalcium phosphate emerges as an active ceramic with proven biocompatibility and superior compatibility with bone tissue. This composite material, endowed with a unique amalgamation of attributes including biocompatibility, porosity, and mechanical strength, proves highly applicable in diverse fields such as tissue engineering, drug delivery systems, wound repair, and as scaffolds for cell proliferation in regenerative medicine.</p></div><div><h3>Methods</h3><p>The focal point of this study is an exploration of the nuanced interplay between the mechanical properties of silica aerogel/chitosan tricalcium phosphate nanocomposites with increasing initial temperature. Employing molecular dynamics (MD) simulation, the research aims to unveil the temperature-induced variations in the critical properties.</p></div><div><h3>Significant Findings</h3><p>The results reveal that the ultimate strength and Young's modulus values are determined to converge to 772.28 MPa and 62.291 GPa, at 297 K. As the initial temperature escalates from 300 to 350 K, the US decreases from 72.28 to 714.47 MPa. The decrease in US could be due to higher temperatures, the increased thermal energy can lead to greater atomic vibrations within the material, which can promote easier dislocation movement and result in reduced resistance to deformation. The results reveal that as temperature increases to 320 K, YM increases to 67.134, and with further increase in temperature, YM decreases to 62.865 GPa</p></div>\",\"PeriodicalId\":381,\"journal\":{\"name\":\"Journal of the Taiwan Institute of Chemical Engineers\",\"volume\":\"164 \",\"pages\":\"Article 105682\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Taiwan Institute of Chemical Engineers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1876107024003407\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Taiwan Institute of Chemical Engineers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876107024003407","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
摘要
壳聚糖是一种从甲壳素中提取的有机聚合物,具有良好的生物相容性和生物降解性,而磷酸三钙则是一种活性陶瓷,具有公认的生物相容性和与骨组织的良好兼容性。这种复合材料具有独特的综合特性,包括生物相容性、多孔性和机械强度,被证明非常适用于组织工程、药物输送系统、伤口修复等多个领域,并可作为再生医学中细胞增殖的支架。本研究的重点是探索二氧化硅气凝胶/壳聚糖磷酸三钙纳米复合材料的机械性能随初始温度升高而产生的微妙相互作用。研究采用分子动力学(MD)模拟,旨在揭示温度引起的临界特性变化。结果表明,在 297 K 时,极限强度和杨氏模量值分别为 772.28 MPa 和 62.291 GPa。US 值下降的原因可能是温度升高,热能增加会导致材料内部原子振动加剧,从而使位错运动更加容易,导致变形阻力减小。结果显示,当温度升高到 320 K 时,YM 上升到 67.134,随着温度的进一步升高,YM 下降到 62.865 GPa。
The effect of initial temperature on the mechanical strength of tricalcium phosphate/Chitosan/Silica aerogels nanocomposites using molecular dynamics simulation
Background
Chitosan is an organic polymer derived from chitin, showcasing commendable biocompatibility and biodegradability, while tricalcium phosphate emerges as an active ceramic with proven biocompatibility and superior compatibility with bone tissue. This composite material, endowed with a unique amalgamation of attributes including biocompatibility, porosity, and mechanical strength, proves highly applicable in diverse fields such as tissue engineering, drug delivery systems, wound repair, and as scaffolds for cell proliferation in regenerative medicine.
Methods
The focal point of this study is an exploration of the nuanced interplay between the mechanical properties of silica aerogel/chitosan tricalcium phosphate nanocomposites with increasing initial temperature. Employing molecular dynamics (MD) simulation, the research aims to unveil the temperature-induced variations in the critical properties.
Significant Findings
The results reveal that the ultimate strength and Young's modulus values are determined to converge to 772.28 MPa and 62.291 GPa, at 297 K. As the initial temperature escalates from 300 to 350 K, the US decreases from 72.28 to 714.47 MPa. The decrease in US could be due to higher temperatures, the increased thermal energy can lead to greater atomic vibrations within the material, which can promote easier dislocation movement and result in reduced resistance to deformation. The results reveal that as temperature increases to 320 K, YM increases to 67.134, and with further increase in temperature, YM decreases to 62.865 GPa
期刊介绍:
Journal of the Taiwan Institute of Chemical Engineers (formerly known as Journal of the Chinese Institute of Chemical Engineers) publishes original works, from fundamental principles to practical applications, in the broad field of chemical engineering with special focus on three aspects: Chemical and Biomolecular Science and Technology, Energy and Environmental Science and Technology, and Materials Science and Technology. Authors should choose for their manuscript an appropriate aspect section and a few related classifications when submitting to the journal online.