预测 MXene/ 石墨烯纳米流体热导率的人工神经网络超参数优化

IF 5.5 3区 工程技术 Q1 ENGINEERING, CHEMICAL Journal of the Taiwan Institute of Chemical Engineers Pub Date : 2024-08-03 DOI:10.1016/j.jtice.2024.105673
Yunyan Shang , Karrar A. Hammoodi , As'ad Alizadeh , Kamal Sharma , Dheyaa J. jasim , Husam Rajab , Mohsen Ahmed , Murizah Kassim , Hamid Maleki , Soheil Salahshour
{"title":"预测 MXene/ 石墨烯纳米流体热导率的人工神经网络超参数优化","authors":"Yunyan Shang ,&nbsp;Karrar A. Hammoodi ,&nbsp;As'ad Alizadeh ,&nbsp;Kamal Sharma ,&nbsp;Dheyaa J. jasim ,&nbsp;Husam Rajab ,&nbsp;Mohsen Ahmed ,&nbsp;Murizah Kassim ,&nbsp;Hamid Maleki ,&nbsp;Soheil Salahshour","doi":"10.1016/j.jtice.2024.105673","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The critical role of thermal conductivity (TC) as a significant thermo-physical property in MXene/graphene-based nanofluids for photovoltaic/thermal systems has motivated recent research into developing precision predictive models. The multilayer perceptron neural network (MLPNN) has emerged as an eminent AI algorithm for this task.</p></div><div><h3>Methods</h3><p>This study employs Bayesian optimization, random search (RS), and grid search (GS) to fine-tune MLPNN hyperparameters—hidden layers, neurons, activation functions, standardization, and regularization—to elevate TC modeling efficiency. The proposed methodology unfolds in sequential phases: data analysis, data pre-processing, and introduction of MLPNN, GS, RS, Bayesian approach, and their integration algorithm. The next phase entails developing predictive models and presenting optimal cases. Lastly, the final models undergo statistical evaluation and graphical comparison for a thorough analysis.</p></div><div><h3>Findings</h3><p>Results manifest that the GS-MLPNN model excels, achieving the lowest testing data error (MAPE = 0.5261%) and high conformity with empirical data (R = 0.99941). Meanwhile, the RS method adjusts hyperparameters with negligible precision loss (MAPE = 0.6046%, R = 0.99887). Contrarily, Bayesian optimization lags, increasing errors (MAPE = 3.1981%) and lower correlation (R = 0.98099), suggesting its relative inefficacy for this specific application. The optimized models provide efficient predictions, significantly reducing the financial/computing costs associated with experimental/numerical analysis.</p></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"164 ","pages":"Article 105673"},"PeriodicalIF":5.5000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial neural network hyperparameters optimization for predicting the thermal conductivity of MXene/graphene nanofluids\",\"authors\":\"Yunyan Shang ,&nbsp;Karrar A. Hammoodi ,&nbsp;As'ad Alizadeh ,&nbsp;Kamal Sharma ,&nbsp;Dheyaa J. jasim ,&nbsp;Husam Rajab ,&nbsp;Mohsen Ahmed ,&nbsp;Murizah Kassim ,&nbsp;Hamid Maleki ,&nbsp;Soheil Salahshour\",\"doi\":\"10.1016/j.jtice.2024.105673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>The critical role of thermal conductivity (TC) as a significant thermo-physical property in MXene/graphene-based nanofluids for photovoltaic/thermal systems has motivated recent research into developing precision predictive models. The multilayer perceptron neural network (MLPNN) has emerged as an eminent AI algorithm for this task.</p></div><div><h3>Methods</h3><p>This study employs Bayesian optimization, random search (RS), and grid search (GS) to fine-tune MLPNN hyperparameters—hidden layers, neurons, activation functions, standardization, and regularization—to elevate TC modeling efficiency. The proposed methodology unfolds in sequential phases: data analysis, data pre-processing, and introduction of MLPNN, GS, RS, Bayesian approach, and their integration algorithm. The next phase entails developing predictive models and presenting optimal cases. Lastly, the final models undergo statistical evaluation and graphical comparison for a thorough analysis.</p></div><div><h3>Findings</h3><p>Results manifest that the GS-MLPNN model excels, achieving the lowest testing data error (MAPE = 0.5261%) and high conformity with empirical data (R = 0.99941). Meanwhile, the RS method adjusts hyperparameters with negligible precision loss (MAPE = 0.6046%, R = 0.99887). Contrarily, Bayesian optimization lags, increasing errors (MAPE = 3.1981%) and lower correlation (R = 0.98099), suggesting its relative inefficacy for this specific application. The optimized models provide efficient predictions, significantly reducing the financial/computing costs associated with experimental/numerical analysis.</p></div>\",\"PeriodicalId\":381,\"journal\":{\"name\":\"Journal of the Taiwan Institute of Chemical Engineers\",\"volume\":\"164 \",\"pages\":\"Article 105673\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Taiwan Institute of Chemical Engineers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1876107024003316\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Taiwan Institute of Chemical Engineers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876107024003316","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

导热系数(TC)是光伏/热系统中基于 MXene/石墨烯的纳米流体的重要热物理性质,其关键作用推动了近期开发精确预测模型的研究。多层感知器神经网络(MLPNN)已成为这一任务的杰出人工智能算法。本研究采用贝叶斯优化、随机搜索(RS)和网格搜索(GS)对 MLPNN 的超参数(隐藏层、神经元、激活函数、标准化和正则化)进行微调,以提高 TC 建模效率。建议的方法按顺序分阶段展开:数据分析、数据预处理、引入 MLPNN、GS、RS、贝叶斯方法及其集成算法。下一阶段需要开发预测模型并提出最佳案例。最后,对最终模型进行统计评估和图形比较,以进行全面分析。结果表明,GS-MLPNN 模型表现出色,测试数据误差最小(MAPE = 0.5261%),与经验数据高度一致(R = 0.99941)。同时,RS 方法调整超参数的精度损失可以忽略不计(MAPE = 0.6046%,R = 0.99887)。与此相反,贝叶斯优化方法则相对滞后,误差增大(MAPE = 3.1981%),相关性降低(R = 0.98099),表明其在这一特定应用中相对无效。优化模型提供了高效的预测,大大降低了与实验/数值分析相关的财务/计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Artificial neural network hyperparameters optimization for predicting the thermal conductivity of MXene/graphene nanofluids

Background

The critical role of thermal conductivity (TC) as a significant thermo-physical property in MXene/graphene-based nanofluids for photovoltaic/thermal systems has motivated recent research into developing precision predictive models. The multilayer perceptron neural network (MLPNN) has emerged as an eminent AI algorithm for this task.

Methods

This study employs Bayesian optimization, random search (RS), and grid search (GS) to fine-tune MLPNN hyperparameters—hidden layers, neurons, activation functions, standardization, and regularization—to elevate TC modeling efficiency. The proposed methodology unfolds in sequential phases: data analysis, data pre-processing, and introduction of MLPNN, GS, RS, Bayesian approach, and their integration algorithm. The next phase entails developing predictive models and presenting optimal cases. Lastly, the final models undergo statistical evaluation and graphical comparison for a thorough analysis.

Findings

Results manifest that the GS-MLPNN model excels, achieving the lowest testing data error (MAPE = 0.5261%) and high conformity with empirical data (R = 0.99941). Meanwhile, the RS method adjusts hyperparameters with negligible precision loss (MAPE = 0.6046%, R = 0.99887). Contrarily, Bayesian optimization lags, increasing errors (MAPE = 3.1981%) and lower correlation (R = 0.98099), suggesting its relative inefficacy for this specific application. The optimized models provide efficient predictions, significantly reducing the financial/computing costs associated with experimental/numerical analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
14.00%
发文量
362
审稿时长
35 days
期刊介绍: Journal of the Taiwan Institute of Chemical Engineers (formerly known as Journal of the Chinese Institute of Chemical Engineers) publishes original works, from fundamental principles to practical applications, in the broad field of chemical engineering with special focus on three aspects: Chemical and Biomolecular Science and Technology, Energy and Environmental Science and Technology, and Materials Science and Technology. Authors should choose for their manuscript an appropriate aspect section and a few related classifications when submitting to the journal online.
期刊最新文献
Cellulose nanocrystals/zeolitic imidazolate framework-L (CNCs/ZIF-L) composites for loading and diffusion-controlled release of doxorubicin hydrochloride Optimization and sensitivity analysis of magnetic fields on nanofluid flow on a wedge with machine learning techniques with joule heating, radiation and viscous dissipation Biochar from residues of anaerobic digestion and its application as electrocatalyst in Zn–air batteries Decoration of mesoporous hydroxyapatite nanorods by CdSe and PtO nanoparticles for enhanced photocatalytic oxidation of antibiotic pollutant in water Fabrication of tannic acid-(3-amino)propyltriethoxysilane with zwitterionic carbon quantum dots coating on cellulose acetate tubular membrane for oil-water emulsion separation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1