Yunyan Shang , Karrar A. Hammoodi , As'ad Alizadeh , Kamal Sharma , Dheyaa J. jasim , Husam Rajab , Mohsen Ahmed , Murizah Kassim , Hamid Maleki , Soheil Salahshour
{"title":"预测 MXene/ 石墨烯纳米流体热导率的人工神经网络超参数优化","authors":"Yunyan Shang , Karrar A. Hammoodi , As'ad Alizadeh , Kamal Sharma , Dheyaa J. jasim , Husam Rajab , Mohsen Ahmed , Murizah Kassim , Hamid Maleki , Soheil Salahshour","doi":"10.1016/j.jtice.2024.105673","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The critical role of thermal conductivity (TC) as a significant thermo-physical property in MXene/graphene-based nanofluids for photovoltaic/thermal systems has motivated recent research into developing precision predictive models. The multilayer perceptron neural network (MLPNN) has emerged as an eminent AI algorithm for this task.</p></div><div><h3>Methods</h3><p>This study employs Bayesian optimization, random search (RS), and grid search (GS) to fine-tune MLPNN hyperparameters—hidden layers, neurons, activation functions, standardization, and regularization—to elevate TC modeling efficiency. The proposed methodology unfolds in sequential phases: data analysis, data pre-processing, and introduction of MLPNN, GS, RS, Bayesian approach, and their integration algorithm. The next phase entails developing predictive models and presenting optimal cases. Lastly, the final models undergo statistical evaluation and graphical comparison for a thorough analysis.</p></div><div><h3>Findings</h3><p>Results manifest that the GS-MLPNN model excels, achieving the lowest testing data error (MAPE = 0.5261%) and high conformity with empirical data (R = 0.99941). Meanwhile, the RS method adjusts hyperparameters with negligible precision loss (MAPE = 0.6046%, R = 0.99887). Contrarily, Bayesian optimization lags, increasing errors (MAPE = 3.1981%) and lower correlation (R = 0.98099), suggesting its relative inefficacy for this specific application. The optimized models provide efficient predictions, significantly reducing the financial/computing costs associated with experimental/numerical analysis.</p></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"164 ","pages":"Article 105673"},"PeriodicalIF":5.5000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial neural network hyperparameters optimization for predicting the thermal conductivity of MXene/graphene nanofluids\",\"authors\":\"Yunyan Shang , Karrar A. Hammoodi , As'ad Alizadeh , Kamal Sharma , Dheyaa J. jasim , Husam Rajab , Mohsen Ahmed , Murizah Kassim , Hamid Maleki , Soheil Salahshour\",\"doi\":\"10.1016/j.jtice.2024.105673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>The critical role of thermal conductivity (TC) as a significant thermo-physical property in MXene/graphene-based nanofluids for photovoltaic/thermal systems has motivated recent research into developing precision predictive models. The multilayer perceptron neural network (MLPNN) has emerged as an eminent AI algorithm for this task.</p></div><div><h3>Methods</h3><p>This study employs Bayesian optimization, random search (RS), and grid search (GS) to fine-tune MLPNN hyperparameters—hidden layers, neurons, activation functions, standardization, and regularization—to elevate TC modeling efficiency. The proposed methodology unfolds in sequential phases: data analysis, data pre-processing, and introduction of MLPNN, GS, RS, Bayesian approach, and their integration algorithm. The next phase entails developing predictive models and presenting optimal cases. Lastly, the final models undergo statistical evaluation and graphical comparison for a thorough analysis.</p></div><div><h3>Findings</h3><p>Results manifest that the GS-MLPNN model excels, achieving the lowest testing data error (MAPE = 0.5261%) and high conformity with empirical data (R = 0.99941). Meanwhile, the RS method adjusts hyperparameters with negligible precision loss (MAPE = 0.6046%, R = 0.99887). Contrarily, Bayesian optimization lags, increasing errors (MAPE = 3.1981%) and lower correlation (R = 0.98099), suggesting its relative inefficacy for this specific application. The optimized models provide efficient predictions, significantly reducing the financial/computing costs associated with experimental/numerical analysis.</p></div>\",\"PeriodicalId\":381,\"journal\":{\"name\":\"Journal of the Taiwan Institute of Chemical Engineers\",\"volume\":\"164 \",\"pages\":\"Article 105673\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Taiwan Institute of Chemical Engineers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1876107024003316\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Taiwan Institute of Chemical Engineers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876107024003316","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Artificial neural network hyperparameters optimization for predicting the thermal conductivity of MXene/graphene nanofluids
Background
The critical role of thermal conductivity (TC) as a significant thermo-physical property in MXene/graphene-based nanofluids for photovoltaic/thermal systems has motivated recent research into developing precision predictive models. The multilayer perceptron neural network (MLPNN) has emerged as an eminent AI algorithm for this task.
Methods
This study employs Bayesian optimization, random search (RS), and grid search (GS) to fine-tune MLPNN hyperparameters—hidden layers, neurons, activation functions, standardization, and regularization—to elevate TC modeling efficiency. The proposed methodology unfolds in sequential phases: data analysis, data pre-processing, and introduction of MLPNN, GS, RS, Bayesian approach, and their integration algorithm. The next phase entails developing predictive models and presenting optimal cases. Lastly, the final models undergo statistical evaluation and graphical comparison for a thorough analysis.
Findings
Results manifest that the GS-MLPNN model excels, achieving the lowest testing data error (MAPE = 0.5261%) and high conformity with empirical data (R = 0.99941). Meanwhile, the RS method adjusts hyperparameters with negligible precision loss (MAPE = 0.6046%, R = 0.99887). Contrarily, Bayesian optimization lags, increasing errors (MAPE = 3.1981%) and lower correlation (R = 0.98099), suggesting its relative inefficacy for this specific application. The optimized models provide efficient predictions, significantly reducing the financial/computing costs associated with experimental/numerical analysis.
期刊介绍:
Journal of the Taiwan Institute of Chemical Engineers (formerly known as Journal of the Chinese Institute of Chemical Engineers) publishes original works, from fundamental principles to practical applications, in the broad field of chemical engineering with special focus on three aspects: Chemical and Biomolecular Science and Technology, Energy and Environmental Science and Technology, and Materials Science and Technology. Authors should choose for their manuscript an appropriate aspect section and a few related classifications when submitting to the journal online.