{"title":"制造具有可调导热性的扁平、可压缩的纳米蜂窝聚甲基丙烯酸甲酯(PMMA)泡沫","authors":"Kiday Fiseha Gebremedhin, Solomon Dufera Tolcha, Shu‐Kai Yeh","doi":"10.1002/pen.26895","DOIUrl":null,"url":null,"abstract":"<jats:label/>Polymeric nanocell foam is a promising material that faces manufacturing challenges. Producing sizable and thick foams for properties testing has been challenging. This study aims to scale up and understand the foaming mechanism of nanocellular foams by controlling the saturation temperature, pressure, and molecular weight distribution of the matrix to fine‐tune the glass transition temperature of the polymer/gas mixture. The hot‐press foamed samples possess a 100 × 70 × 6 ~ 8 mm<jats:sup>3</jats:sup> dimension and a cell size of less than 200 nm. Bimodal structures can also be created by controlling the critical processing parameters. Introducing 37% microcells into unimodal nanocellular foam reduced the relative density from 0.29 to 0.19. The thermal conductivity of the foams was tuned by controlling the cell size distribution. Unimodal nanofoams have the lowest thermal conductivity for foams of the same density due to the Knudsen effect and tortuosity. The measured thermal conductivity is in agreement with theoretical models.Highlights<jats:list list-type=\"bullet\"> <jats:list-item>PMMA nanofoam with a dimension of 100 × 70 × 6–8 mm<jats:sup>3</jats:sup> and cell size below 200 nm.</jats:list-item> <jats:list-item>The morphology of nanofoams was tuned to be unimodal and bimodal.</jats:list-item> <jats:list-item>The foam density of the bimodal nanofoams was lowered below 0.238 g/cm<jats:sup>3</jats:sup>.</jats:list-item> <jats:list-item>The thermal conductivity of foams was tuned by controlling the cell structure.</jats:list-item> </jats:list>","PeriodicalId":20281,"journal":{"name":"Polymer Engineering and Science","volume":"41 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of flat and sizeable nanocellular polymethyl methacrylate (PMMA) foam with tunable thermal conductivity\",\"authors\":\"Kiday Fiseha Gebremedhin, Solomon Dufera Tolcha, Shu‐Kai Yeh\",\"doi\":\"10.1002/pen.26895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:label/>Polymeric nanocell foam is a promising material that faces manufacturing challenges. Producing sizable and thick foams for properties testing has been challenging. This study aims to scale up and understand the foaming mechanism of nanocellular foams by controlling the saturation temperature, pressure, and molecular weight distribution of the matrix to fine‐tune the glass transition temperature of the polymer/gas mixture. The hot‐press foamed samples possess a 100 × 70 × 6 ~ 8 mm<jats:sup>3</jats:sup> dimension and a cell size of less than 200 nm. Bimodal structures can also be created by controlling the critical processing parameters. Introducing 37% microcells into unimodal nanocellular foam reduced the relative density from 0.29 to 0.19. The thermal conductivity of the foams was tuned by controlling the cell size distribution. Unimodal nanofoams have the lowest thermal conductivity for foams of the same density due to the Knudsen effect and tortuosity. The measured thermal conductivity is in agreement with theoretical models.Highlights<jats:list list-type=\\\"bullet\\\"> <jats:list-item>PMMA nanofoam with a dimension of 100 × 70 × 6–8 mm<jats:sup>3</jats:sup> and cell size below 200 nm.</jats:list-item> <jats:list-item>The morphology of nanofoams was tuned to be unimodal and bimodal.</jats:list-item> <jats:list-item>The foam density of the bimodal nanofoams was lowered below 0.238 g/cm<jats:sup>3</jats:sup>.</jats:list-item> <jats:list-item>The thermal conductivity of foams was tuned by controlling the cell structure.</jats:list-item> </jats:list>\",\"PeriodicalId\":20281,\"journal\":{\"name\":\"Polymer Engineering and Science\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Engineering and Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/pen.26895\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Engineering and Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/pen.26895","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Fabrication of flat and sizeable nanocellular polymethyl methacrylate (PMMA) foam with tunable thermal conductivity
Polymeric nanocell foam is a promising material that faces manufacturing challenges. Producing sizable and thick foams for properties testing has been challenging. This study aims to scale up and understand the foaming mechanism of nanocellular foams by controlling the saturation temperature, pressure, and molecular weight distribution of the matrix to fine‐tune the glass transition temperature of the polymer/gas mixture. The hot‐press foamed samples possess a 100 × 70 × 6 ~ 8 mm3 dimension and a cell size of less than 200 nm. Bimodal structures can also be created by controlling the critical processing parameters. Introducing 37% microcells into unimodal nanocellular foam reduced the relative density from 0.29 to 0.19. The thermal conductivity of the foams was tuned by controlling the cell size distribution. Unimodal nanofoams have the lowest thermal conductivity for foams of the same density due to the Knudsen effect and tortuosity. The measured thermal conductivity is in agreement with theoretical models.HighlightsPMMA nanofoam with a dimension of 100 × 70 × 6–8 mm3 and cell size below 200 nm.The morphology of nanofoams was tuned to be unimodal and bimodal.The foam density of the bimodal nanofoams was lowered below 0.238 g/cm3.The thermal conductivity of foams was tuned by controlling the cell structure.
期刊介绍:
For more than 30 years, Polymer Engineering & Science has been one of the most highly regarded journals in the field, serving as a forum for authors of treatises on the cutting edge of polymer science and technology. The importance of PE&S is underscored by the frequent rate at which its articles are cited, especially by other publications - literally thousand of times a year. Engineers, researchers, technicians, and academicians worldwide are looking to PE&S for the valuable information they need. There are special issues compiled by distinguished guest editors. These contain proceedings of symposia on such diverse topics as polyblends, mechanics of plastics and polymer welding.