Sheng Lei, Ling Zhang, Kai Wang, Chunbo Liu, Xianyi Li, Zhongqiu Tang and Lingxiang Jiang
{"title":"揭示卷烟过滤嘴多孔异质材料中分子和颗粒的运动轨迹","authors":"Sheng Lei, Ling Zhang, Kai Wang, Chunbo Liu, Xianyi Li, Zhongqiu Tang and Lingxiang Jiang","doi":"10.1088/2053-1591/ad695a","DOIUrl":null,"url":null,"abstract":"Molecular dynamics and mass transportation in porous structures provide a basis for us to understand catalysis, energy storage and generation, and biological processes in porous confinements. While conventional methods extract macroscopic information in an ensemble-averaged manner, we intend to follow the journey of individual particles and molecules in porous structures relevant to cigarette filters by tracking the single-object dynamics in real space and real time. Nanoparticles of various sizes are embedded in fibrous frameworks of agarose where small particles (50 nm) can explore pores and their connections, locally mapping out the porous structure, middle-sized particles (100 nm) are trapped in single pores to fluctuate within, and large particles (500 nm) are fully immobilized by surrounding fibers. This model system is relevant to the retention and filtration of tar particles or other kinds of particulate matters by fibrous cellulose frequently used in cigarette filters. A molecular tracer is loaded to zeolite-based porous structures, where the majority are fixated in space by adsorption or micropore trapping, exhibiting localized trajectories within a 10-nm radius, and the minority are mobile to scout macropores. This molecular system may elucidate on how aromatic molecules like PAHs are adsorbed and transported in a matrix of mixed micro-, meso-, and macropores.","PeriodicalId":18530,"journal":{"name":"Materials Research Express","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revealing the journey of molecules and particles in heterogeneous, porous materials for cigarette filters\",\"authors\":\"Sheng Lei, Ling Zhang, Kai Wang, Chunbo Liu, Xianyi Li, Zhongqiu Tang and Lingxiang Jiang\",\"doi\":\"10.1088/2053-1591/ad695a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Molecular dynamics and mass transportation in porous structures provide a basis for us to understand catalysis, energy storage and generation, and biological processes in porous confinements. While conventional methods extract macroscopic information in an ensemble-averaged manner, we intend to follow the journey of individual particles and molecules in porous structures relevant to cigarette filters by tracking the single-object dynamics in real space and real time. Nanoparticles of various sizes are embedded in fibrous frameworks of agarose where small particles (50 nm) can explore pores and their connections, locally mapping out the porous structure, middle-sized particles (100 nm) are trapped in single pores to fluctuate within, and large particles (500 nm) are fully immobilized by surrounding fibers. This model system is relevant to the retention and filtration of tar particles or other kinds of particulate matters by fibrous cellulose frequently used in cigarette filters. A molecular tracer is loaded to zeolite-based porous structures, where the majority are fixated in space by adsorption or micropore trapping, exhibiting localized trajectories within a 10-nm radius, and the minority are mobile to scout macropores. This molecular system may elucidate on how aromatic molecules like PAHs are adsorbed and transported in a matrix of mixed micro-, meso-, and macropores.\",\"PeriodicalId\":18530,\"journal\":{\"name\":\"Materials Research Express\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Express\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/2053-1591/ad695a\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Express","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2053-1591/ad695a","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Revealing the journey of molecules and particles in heterogeneous, porous materials for cigarette filters
Molecular dynamics and mass transportation in porous structures provide a basis for us to understand catalysis, energy storage and generation, and biological processes in porous confinements. While conventional methods extract macroscopic information in an ensemble-averaged manner, we intend to follow the journey of individual particles and molecules in porous structures relevant to cigarette filters by tracking the single-object dynamics in real space and real time. Nanoparticles of various sizes are embedded in fibrous frameworks of agarose where small particles (50 nm) can explore pores and their connections, locally mapping out the porous structure, middle-sized particles (100 nm) are trapped in single pores to fluctuate within, and large particles (500 nm) are fully immobilized by surrounding fibers. This model system is relevant to the retention and filtration of tar particles or other kinds of particulate matters by fibrous cellulose frequently used in cigarette filters. A molecular tracer is loaded to zeolite-based porous structures, where the majority are fixated in space by adsorption or micropore trapping, exhibiting localized trajectories within a 10-nm radius, and the minority are mobile to scout macropores. This molecular system may elucidate on how aromatic molecules like PAHs are adsorbed and transported in a matrix of mixed micro-, meso-, and macropores.
期刊介绍:
A broad, rapid peer-review journal publishing new experimental and theoretical research on the design, fabrication, properties and applications of all classes of materials.