将金纳米棒与表面增强拉曼光谱结合应用于赭曲霉毒素 A 的免疫层析测定

IF 0.8 Q3 Engineering Nanotechnologies in Russia Pub Date : 2024-08-06 DOI:10.1134/S2635167624600391
K. V. Serebrennikova, L. V. Barshevskaya, A. V. Zherdev, B. B. Dzantiev
{"title":"将金纳米棒与表面增强拉曼光谱结合应用于赭曲霉毒素 A 的免疫层析测定","authors":"K. V. Serebrennikova,&nbsp;L. V. Barshevskaya,&nbsp;A. V. Zherdev,&nbsp;B. B. Dzantiev","doi":"10.1134/S2635167624600391","DOIUrl":null,"url":null,"abstract":"<p>The aim of the study was to increase the sensitivity of immunochromatographic assay (ICA), achieved using gold nanorods modified with 5,5'-dithiobis-(2-nitrobenzoic acid). The resulting nanomarker makes it possible to quantify the target analyte using colorimetry and surface-enhanced Raman spectroscopy (SERS). One of the widespread mycotoxins, ochratoxin A (OTA), was chosen as the object of study. After functionalization of gold nanorods with antispecies antibodies, the SERS-active tag was used to detect immune complexes formed in the analytical zone as a result of the competitive interaction between free OTA and the hapten-protein conjugate for the binding sites of specific antibodies. After immunochromatographic assay, SERS intensity of 5,5'-dithiobis-(2-nitrobenzoic acid) was measured. Under optimized conditions, the detection limit of OTA in the colorimetric detection mode was 1.7 ng/mL, and when recording ICA results using SERS, it decreased to 33 pg/mL.</p>","PeriodicalId":716,"journal":{"name":"Nanotechnologies in Russia","volume":"19 1","pages":"148 - 155"},"PeriodicalIF":0.8000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Gold Nanorods in Combination with Surface-Enhanced Raman Spectroscopy for Immunochromatographic Determination of Ochratoxin A\",\"authors\":\"K. V. Serebrennikova,&nbsp;L. V. Barshevskaya,&nbsp;A. V. Zherdev,&nbsp;B. B. Dzantiev\",\"doi\":\"10.1134/S2635167624600391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The aim of the study was to increase the sensitivity of immunochromatographic assay (ICA), achieved using gold nanorods modified with 5,5'-dithiobis-(2-nitrobenzoic acid). The resulting nanomarker makes it possible to quantify the target analyte using colorimetry and surface-enhanced Raman spectroscopy (SERS). One of the widespread mycotoxins, ochratoxin A (OTA), was chosen as the object of study. After functionalization of gold nanorods with antispecies antibodies, the SERS-active tag was used to detect immune complexes formed in the analytical zone as a result of the competitive interaction between free OTA and the hapten-protein conjugate for the binding sites of specific antibodies. After immunochromatographic assay, SERS intensity of 5,5'-dithiobis-(2-nitrobenzoic acid) was measured. Under optimized conditions, the detection limit of OTA in the colorimetric detection mode was 1.7 ng/mL, and when recording ICA results using SERS, it decreased to 33 pg/mL.</p>\",\"PeriodicalId\":716,\"journal\":{\"name\":\"Nanotechnologies in Russia\",\"volume\":\"19 1\",\"pages\":\"148 - 155\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnologies in Russia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S2635167624600391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnologies in Russia","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2635167624600391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

摘要 该研究的目的是利用用 5,5'-二硫双(2-硝基苯甲酸)修饰的金纳米棒提高免疫层析(ICA)的灵敏度。由此产生的纳米标记物可以利用比色法和表面增强拉曼光谱(SERS)对目标分析物进行定量。赭曲霉毒素 A(OTA)是一种广泛存在的霉菌毒素,被选为研究对象。在用抗物种抗体对金纳米棒进行功能化之后,SERS 活性标签被用来检测分析区中由于游离 OTA 与合蛋白共轭物对特异性抗体结合位点的竞争性作用而形成的免疫复合物。免疫层析检测后,测量 5,5'-二硫双(2-硝基苯甲酸)的 SERS 强度。在优化条件下,比色检测模式下 OTA 的检测限为 1.7 纳克/毫升,而使用 SERS 记录 ICA 结果时,检测限降至 33 皮克/毫升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of Gold Nanorods in Combination with Surface-Enhanced Raman Spectroscopy for Immunochromatographic Determination of Ochratoxin A

The aim of the study was to increase the sensitivity of immunochromatographic assay (ICA), achieved using gold nanorods modified with 5,5'-dithiobis-(2-nitrobenzoic acid). The resulting nanomarker makes it possible to quantify the target analyte using colorimetry and surface-enhanced Raman spectroscopy (SERS). One of the widespread mycotoxins, ochratoxin A (OTA), was chosen as the object of study. After functionalization of gold nanorods with antispecies antibodies, the SERS-active tag was used to detect immune complexes formed in the analytical zone as a result of the competitive interaction between free OTA and the hapten-protein conjugate for the binding sites of specific antibodies. After immunochromatographic assay, SERS intensity of 5,5'-dithiobis-(2-nitrobenzoic acid) was measured. Under optimized conditions, the detection limit of OTA in the colorimetric detection mode was 1.7 ng/mL, and when recording ICA results using SERS, it decreased to 33 pg/mL.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanotechnologies in Russia
Nanotechnologies in Russia NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
1.20
自引率
0.00%
发文量
0
期刊介绍: Nanobiotechnology Reports publishes interdisciplinary research articles on fundamental aspects of the structure and properties of nanoscale objects and nanomaterials, polymeric and bioorganic molecules, and supramolecular and biohybrid complexes, as well as articles that discuss technologies for their preparation and processing, and practical implementation of products, devices, and nature-like systems based on them. The journal publishes original articles and reviews that meet the highest scientific quality standards in the following areas of science and technology studies: self-organizing structures and nanoassemblies; nanostructures, including nanotubes; functional and structural nanomaterials; polymeric, bioorganic, and hybrid nanomaterials; devices and products based on nanomaterials and nanotechnology; nanobiology and genetics, and omics technologies; nanobiomedicine and nanopharmaceutics; nanoelectronics and neuromorphic computing systems; neurocognitive systems and technologies; nanophotonics; natural science methods in a study of cultural heritage items; metrology, standardization, and monitoring in nanotechnology.
期刊最新文献
Editorial Towards the Implementation of High-Throughput Next-Generation Sequencing Technology in Clinical Oncology. Where Are We Now? Separation of Short Fluorescently Labeled Peptides by Gel Electrophoresis for an In Vitro Translation Study Dendritic Silver Structures for the SERS Diagnostics of Liquids Aging Biomarkers in Assessing the Efficacy of Geroprotective Therapy: Problems and Prospects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1