Shengnan Jiang, Runqi Zhang, Shuqiang Ding, Shangyi Yang, Hongzhen Wang
{"title":"通过石墨改性技术制备高性能耐辐射三元乙丙橡胶复合材料的简便途径","authors":"Shengnan Jiang, Runqi Zhang, Shuqiang Ding, Shangyi Yang, Hongzhen Wang","doi":"10.1002/pat.6525","DOIUrl":null,"url":null,"abstract":"Modification and improvement of aging resistance in nuclear power environment for the ethylene‐propylene‐diene (EPDM) rubber has been attracting the attention of scientists. In this article, graphite modified EPDM composites (ultrafine graphite [UG]/EPDM) were prepared, and effect of graphite with sizes of 13, 2.6, and 1.3 μm on the processability, vulcanization parameters, mechanical properties, stability of radiation aging of EPDM composites were investigated, respectively. The results showed that EPDM rubber was an irradiated crosslinked polymer. The Mooney viscosity and crosslinking density of EPDM gradually increased with increasing graphite content under the effect of physical and chemical cross‐linking of graphite. The lamellar structure of graphite particles in the rubber matrix is beneficial to improvement of the mechanical properties and aging resistance of the EPDM composites and play a reinforcing role, and the sp<jats:sup>2</jats:sup> hybrid structure of graphite can trap and quench free radicals, delayed the irradiation aging of EPDM. UG/EPDM composites irradiation stability was improved with increasing graphite dispersion in EPDM matrix. Under the cumulative irradiation dose of 1000 kGy, the tensile strength of blank sample and UG‐2.6 μm<jats:sup>−10</jats:sup> decreased by 51.1% and 17.7%, respectively, and the hardness increased by 8.7% and 4.9%, respectively. The energy storage modulus and the corresponding glass transition temperature (<jats:italic>Tg</jats:italic>) of UG/EPDM composites enhanced with graphite, while the thermal stability of the composites was improved.","PeriodicalId":20382,"journal":{"name":"Polymers for Advanced Technologies","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One facile route to prepare high‐performance radiation resistant EPDM rubber composites through graphite modification technology\",\"authors\":\"Shengnan Jiang, Runqi Zhang, Shuqiang Ding, Shangyi Yang, Hongzhen Wang\",\"doi\":\"10.1002/pat.6525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modification and improvement of aging resistance in nuclear power environment for the ethylene‐propylene‐diene (EPDM) rubber has been attracting the attention of scientists. In this article, graphite modified EPDM composites (ultrafine graphite [UG]/EPDM) were prepared, and effect of graphite with sizes of 13, 2.6, and 1.3 μm on the processability, vulcanization parameters, mechanical properties, stability of radiation aging of EPDM composites were investigated, respectively. The results showed that EPDM rubber was an irradiated crosslinked polymer. The Mooney viscosity and crosslinking density of EPDM gradually increased with increasing graphite content under the effect of physical and chemical cross‐linking of graphite. The lamellar structure of graphite particles in the rubber matrix is beneficial to improvement of the mechanical properties and aging resistance of the EPDM composites and play a reinforcing role, and the sp<jats:sup>2</jats:sup> hybrid structure of graphite can trap and quench free radicals, delayed the irradiation aging of EPDM. UG/EPDM composites irradiation stability was improved with increasing graphite dispersion in EPDM matrix. Under the cumulative irradiation dose of 1000 kGy, the tensile strength of blank sample and UG‐2.6 μm<jats:sup>−10</jats:sup> decreased by 51.1% and 17.7%, respectively, and the hardness increased by 8.7% and 4.9%, respectively. The energy storage modulus and the corresponding glass transition temperature (<jats:italic>Tg</jats:italic>) of UG/EPDM composites enhanced with graphite, while the thermal stability of the composites was improved.\",\"PeriodicalId\":20382,\"journal\":{\"name\":\"Polymers for Advanced Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers for Advanced Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/pat.6525\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers for Advanced Technologies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/pat.6525","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
One facile route to prepare high‐performance radiation resistant EPDM rubber composites through graphite modification technology
Modification and improvement of aging resistance in nuclear power environment for the ethylene‐propylene‐diene (EPDM) rubber has been attracting the attention of scientists. In this article, graphite modified EPDM composites (ultrafine graphite [UG]/EPDM) were prepared, and effect of graphite with sizes of 13, 2.6, and 1.3 μm on the processability, vulcanization parameters, mechanical properties, stability of radiation aging of EPDM composites were investigated, respectively. The results showed that EPDM rubber was an irradiated crosslinked polymer. The Mooney viscosity and crosslinking density of EPDM gradually increased with increasing graphite content under the effect of physical and chemical cross‐linking of graphite. The lamellar structure of graphite particles in the rubber matrix is beneficial to improvement of the mechanical properties and aging resistance of the EPDM composites and play a reinforcing role, and the sp2 hybrid structure of graphite can trap and quench free radicals, delayed the irradiation aging of EPDM. UG/EPDM composites irradiation stability was improved with increasing graphite dispersion in EPDM matrix. Under the cumulative irradiation dose of 1000 kGy, the tensile strength of blank sample and UG‐2.6 μm−10 decreased by 51.1% and 17.7%, respectively, and the hardness increased by 8.7% and 4.9%, respectively. The energy storage modulus and the corresponding glass transition temperature (Tg) of UG/EPDM composites enhanced with graphite, while the thermal stability of the composites was improved.
期刊介绍:
Polymers for Advanced Technologies is published in response to recent significant changes in the patterns of materials research and development. Worldwide attention has been focused on the critical importance of materials in the creation of new devices and systems. It is now recognized that materials are often the limiting factor in bringing a new technical concept to fruition and that polymers are often the materials of choice in these demanding applications. A significant portion of the polymer research ongoing in the world is directly or indirectly related to the solution of complex, interdisciplinary problems whose successful resolution is necessary for achievement of broad system objectives.
Polymers for Advanced Technologies is focused to the interest of scientists and engineers from academia and industry who are participating in these new areas of polymer research and development. It is the intent of this journal to impact the polymer related advanced technologies to meet the challenge of the twenty-first century.
Polymers for Advanced Technologies aims at encouraging innovation, invention, imagination and creativity by providing a broad interdisciplinary platform for the presentation of new research and development concepts, theories and results which reflect the changing image and pace of modern polymer science and technology.
Polymers for Advanced Technologies aims at becoming the central organ of the new multi-disciplinary polymer oriented materials science of the highest scientific standards. It will publish original research papers on finished studies; communications limited to five typewritten pages plus three illustrations, containing experimental details; review articles of up to 40 pages; letters to the editor and book reviews. Review articles will normally be published by invitation. The Editor-in-Chief welcomes suggestions for reviews.