{"title":"形状记忆液晶聚合物:刺激响应性、先进技术和关键应用","authors":"Peerawat Prathumrat, Mostafa Nikzad, Reza Arablouei, Manunya Okhawilai","doi":"10.1002/pat.6531","DOIUrl":null,"url":null,"abstract":"Liquid crystalline polymers (LCPs) represent a distinct class of materials that have garnered significant interest for their utilisation in diverse industrial and engineering applications. A prominent attribute of LCPs is their stimuli‐responsiveness. These materials can undergo deformation and subsequently recover their original shapes when subjected to external stimuli such as heat, light, and electromagnetic fields. The molecular structure of LCPs consists of mesogens and flexible tails, mirroring the fundamental molecular mechanism found in shape memory polymers. This characteristic positions LCPs as promising materials for shape memory applications. This article provides a comprehensive review of LCPs, focusing on their various forms of stimuli‐responsiveness. In addition, it delves into the application of additive manufacturing and machine learning technologies in the context of shape memory LCPs. Finally, the article concludes by exploring the critical applications of LCPs as shape memory materials.","PeriodicalId":20382,"journal":{"name":"Polymers for Advanced Technologies","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shape memory liquid crystalline polymers: Stimuli‐responsiveness, advanced technologies, and key applications\",\"authors\":\"Peerawat Prathumrat, Mostafa Nikzad, Reza Arablouei, Manunya Okhawilai\",\"doi\":\"10.1002/pat.6531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Liquid crystalline polymers (LCPs) represent a distinct class of materials that have garnered significant interest for their utilisation in diverse industrial and engineering applications. A prominent attribute of LCPs is their stimuli‐responsiveness. These materials can undergo deformation and subsequently recover their original shapes when subjected to external stimuli such as heat, light, and electromagnetic fields. The molecular structure of LCPs consists of mesogens and flexible tails, mirroring the fundamental molecular mechanism found in shape memory polymers. This characteristic positions LCPs as promising materials for shape memory applications. This article provides a comprehensive review of LCPs, focusing on their various forms of stimuli‐responsiveness. In addition, it delves into the application of additive manufacturing and machine learning technologies in the context of shape memory LCPs. Finally, the article concludes by exploring the critical applications of LCPs as shape memory materials.\",\"PeriodicalId\":20382,\"journal\":{\"name\":\"Polymers for Advanced Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers for Advanced Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/pat.6531\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers for Advanced Technologies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/pat.6531","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Liquid crystalline polymers (LCPs) represent a distinct class of materials that have garnered significant interest for their utilisation in diverse industrial and engineering applications. A prominent attribute of LCPs is their stimuli‐responsiveness. These materials can undergo deformation and subsequently recover their original shapes when subjected to external stimuli such as heat, light, and electromagnetic fields. The molecular structure of LCPs consists of mesogens and flexible tails, mirroring the fundamental molecular mechanism found in shape memory polymers. This characteristic positions LCPs as promising materials for shape memory applications. This article provides a comprehensive review of LCPs, focusing on their various forms of stimuli‐responsiveness. In addition, it delves into the application of additive manufacturing and machine learning technologies in the context of shape memory LCPs. Finally, the article concludes by exploring the critical applications of LCPs as shape memory materials.
期刊介绍:
Polymers for Advanced Technologies is published in response to recent significant changes in the patterns of materials research and development. Worldwide attention has been focused on the critical importance of materials in the creation of new devices and systems. It is now recognized that materials are often the limiting factor in bringing a new technical concept to fruition and that polymers are often the materials of choice in these demanding applications. A significant portion of the polymer research ongoing in the world is directly or indirectly related to the solution of complex, interdisciplinary problems whose successful resolution is necessary for achievement of broad system objectives.
Polymers for Advanced Technologies is focused to the interest of scientists and engineers from academia and industry who are participating in these new areas of polymer research and development. It is the intent of this journal to impact the polymer related advanced technologies to meet the challenge of the twenty-first century.
Polymers for Advanced Technologies aims at encouraging innovation, invention, imagination and creativity by providing a broad interdisciplinary platform for the presentation of new research and development concepts, theories and results which reflect the changing image and pace of modern polymer science and technology.
Polymers for Advanced Technologies aims at becoming the central organ of the new multi-disciplinary polymer oriented materials science of the highest scientific standards. It will publish original research papers on finished studies; communications limited to five typewritten pages plus three illustrations, containing experimental details; review articles of up to 40 pages; letters to the editor and book reviews. Review articles will normally be published by invitation. The Editor-in-Chief welcomes suggestions for reviews.